Cho tam giác ABC vuông tại A. Lấy điểm M bất kì trên đoạn AC, đường tròn đường kính CM

411

Với giải Bài 6 trang 74 Toán 9 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Tứ giác nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 2: Tứ giác nội tiếp

Bài 6 trang 74 Toán 9 Tập 2: Cho tam giác ABC vuông tại A. Lấy điểm M bất kì trên đoạn AC, đường tròn đường kính CM cắt hai đường thẳng BM và BC lần lượt tại D và N. Chứng minh rằng:

a) Tứ giác ABCD nội tiếp;

b) Các đường thẳng AB, MN, CD cùng đi qua một điểm.

Lời giải:

Bài 6 trang 74 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

a) Xét đường tròn đường kính MC có MDC^=90° (góc nội tiếp chắn nửa đường tròn).

Ta có ∆BAC vuông tại A và ∆BDC vuông tại D cùng nội tiếp đường tròn đường kính BC.

Suy ra ABCD là tứ giác nội tiếp đường tròn đường kính BC.

b) Xét đường tròn đường kính MC có MNC^=90° (góc nội tiếp chắn nửa đường tròn).

Xét ∆MBC có NC  MN, suy ra BC  MN; MC  AB; MB  CD.

Hay MN, AB, CD là các đường cao trong ∆MBC.

Khi đó, MN, AB, CD cùng đi qua một điểm (trực tâm H).

Đánh giá

0

0 đánh giá