Với giải Bài 6 trang 74 Toán 9 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Tứ giác nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 2: Tứ giác nội tiếp
Bài 6 trang 74 Toán 9 Tập 2: Cho tam giác ABC vuông tại A. Lấy điểm M bất kì trên đoạn AC, đường tròn đường kính CM cắt hai đường thẳng BM và BC lần lượt tại D và N. Chứng minh rằng:
a) Tứ giác ABCD nội tiếp;
b) Các đường thẳng AB, MN, CD cùng đi qua một điểm.
Lời giải:
a) Xét đường tròn đường kính MC có (góc nội tiếp chắn nửa đường tròn).
Ta có ∆BAC vuông tại A và ∆BDC vuông tại D cùng nội tiếp đường tròn đường kính BC.
Suy ra ABCD là tứ giác nội tiếp đường tròn đường kính BC.
b) Xét đường tròn đường kính MC có (góc nội tiếp chắn nửa đường tròn).
Xét ∆MBC có NC ⊥ MN, suy ra BC ⊥ MN; MC ⊥ AB; MB ⊥ CD.
Hay MN, AB, CD là các đường cao trong ∆MBC.
Khi đó, MN, AB, CD cùng đi qua một điểm (trực tâm H).
Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Khám phá 1 trang 70 Toán 9 Tập 2: Các tứ giác trong Hình 1 có đặc điểm gì giống nhau?...
Khám phá 2 trang 71 Toán 9 Tập 2: Cho tứ giác ABCD nội tiếp đường tròn (O) (Hình 4)....
Thực hành 2 trang 71 Toán 9 Tập 2: Tìm số đo các góc chưa biết của tứ giác ABCD trong Hình 6....
Khám phá 3 trang 72 Toán 9 Tập 2: Cho hình chữ nhật ABCD và hình vuông MNPQ (Hình 8)....
Bài 1 trang 73 Toán 9 Tập 2: Cho ABCD là tứ giác nội tiếp. Hãy hoàn thành bảng sau vào vở....
Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác