Giải các phương trình: x(x + 8) = 20; x(3x – 4) = 2x^2 + 5; (x – 5)^2 + 7x = 65

199

Với giải Bài 3 trang 17 Toán 9 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Phương trình bậc hai một ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 2: Phương trình bậc hai một ẩn

Bài 3 trang 17 Toán 9 Tập 2: Giải các phương trình:

a) x(x + 8) = 20;

b) x(3x – 4) = 2x2 + 5;

c) (x – 5)2 + 7x = 65;

d) (2x + 3)(2x – 3) = 5(2x + 3).

Lời giải:

a) x(x + 8) = 20

x2 + 8x – 20 = 0

Ta có a = 1; b' = 4; c = –20 nên ∆' = 42 – 1 . (–20) = 36 > 0.

Vậy phương trình có hai nghiệm phân biệt là: x1=4+361=2;  x2=4361=10.

b) x(3x – 4) = 2x2 + 5

3x2 – 4x = 2x2 + 5

x2 – 4x – 5 = 0

Ta có a = 1; b' = –2; c = –5 nên ∆' = (–2)2 – 1 . (–5) = 9 > 0.

Vậy phương trình có hai nghiệm phân biệt là: x1=2+91=5;  x2=291=1.

c) (x – 5)2 + 7x = 65

x2 – 10x + 25 + 7x = 65

x2 – 3x – 40 = 0

Ta có a = 1; b = –3; c = –40 nên ∆ = (–3)2 – 4 . 1 . (–40) = 169 > 0.

Vậy phương trình có hai nghiệm phân biệt là: x1=3+1692=8;  x2=31692=5.

d) (2x + 3)(2x – 3) = 5(2x + 3)

4x2 – 9 = 10x + 15

4x2 – 10x – 24 = 0

2x2 – 5x – 12 = 0

Ta có a = 2; b = –5; c = –12 nên ∆ = (–5)2 – 4 . 2 . (–12) = 121 > 0.

Vậy phương trình có hai nghiệm phân biệt là: x1=5+1214=4;  x2=51214=32.

Đánh giá

0

0 đánh giá