Chứng minh phương trình bậc hai luôn có nghiệm với mọi m hay, chi tiết

8

Tailieumoi.vn xin giới thiệu Chứng minh phương trình bậc hai luôn có nghiệm với mọi m hay, chi tiết được sưu tầm và biên soạn theo chương trình học của 3 bộ sách mới. Bài viết gồm bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 9. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết phương trình bậc hai luôn có nghiệm với mọi m. Mời các bạn đón xem:

Chứng minh phương trình bậc hai luôn có nghiệm với mọi m 

1. Phương trình bậc 2 là gì?

Phương trình bậc 2 là phương trình có dạng:

ax2+bx+c=0 (a≠0), được gọi là phương trình bậc 2 với ẩn là x.(1)

Nhiệm vụ là phải giải phương trình trên để đi tìm giá trị của x sao cho khi thay x vào phương trình (1) thì thỏa mãn ax2+bx+c=0.

2. Cách giải phương trình bậc hai

Cách giải phương trình bậc 2 như sau:

Bước 1: Tính Δ=b2-4ac

Bước 2: So sánh Δ với 0

Khi:

  • Δ < 0 => phương trình (1) vô nghiệm
  • Δ = 0 => phương trình (1) có nghiệm kép x\ =\ \frac{-b}{2a}
  • Δ > 0 => phương trình (1) có 2 nghiệm phân biệt x_{1}=\frac{-b+\sqrt{\Delta}}{2 a}{ }_{v a ̀} x_{2}=\frac{-b-\sqrt{\Delta}}{2 a}

3. Cách chứng minh phương trình bậc hai luôn có nghiệm với mọi m

Bước 1: Tính Delta

Bước 2: Biến đổi biểu thức Delta, chứng minh Delta luôn dương thì phương trình luôn có nghiệm với mọi giá trị của m.

Bước 3: Kết luận.

Ví dụ minh họa

Ví dụ: Cho pt x2 – (m-2)x +m-4=0 (x ẩn ; m tham số )

a) chứng minh phương trình luôn có nghiệm với mọi m.

Xét Δ = (m- 2)2- 4*(m- 4)= m2- 4m+ 4- 4m+ 16= m2- 8m+ 20= (m- 4)2+ 4>= 4

Δ >= 4> 0 với mọi m => pt luôn có hai nghiệm phân biệt với mọi m .

b) Tìm giá trị của m để phương trình có 2 nghiệm đối nhau

phương trình có hai nghiệm đối nhau khi <=> x1+ x2= 0 <=> m- 2= 0 =>m=2

Vậy với m= 2 phương trình có 2 nghiệm đối nhau

Ví dụ 2. Cho phương trình {x^2} - 2\left( {m - 1} \right)x + m - 3 = 0 (m là tham số)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt

b) Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m.

Hướng dẫn giải

a) Ta có:

\Delta  = {\left[ { - \left( {m - 1} \right)} \right]^2} - 1\left( {m - 3} \right) = {m^2} - 3m + 4 = {\left( {m - \frac{3}{2}} \right)^2} + \frac{7}{4} > 0;\forall m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của tham số m

b) Theo hệ thức Vi – et ta có: \left\{ {\begin{array}{*{20}{c}}
  {{x_1} + {x_2} = 2\left( {m - 1} \right)} \\ 
  {{x_1}.{x_2} = m - 3} 
\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {{x_1} + {x_2} = 2m - 2} \\ 
  {2{x_1}.{x_2} = 2m - 6} 
\end{array}} \right.

không phụ thuộc vào tham số m

Ví dụ 3: Cho phương trình {x^2} - 2\left( {m - 1} \right)x + 2m - 5 = 0 (m là tham số)

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.

b) Tìm giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x1 < 1 < x2

Hướng dẫn giải

a) Ta có:

\begin{matrix}
  \Delta  = {\left[ { - \left( {m - 1} \right)} \right]^2} - 4.1\left( {2m - 5} \right) \hfill \\
  \Delta  = 4{m^2} - 12m + 22 \hfill \\
  \Delta  = {\left( {2m} \right)^2} - 2.2m.3 + 9 + 13 = {\left( {2m + 3} \right)^2} + 12 > 0\forall m \hfill \\ 
\end{matrix}

Vậy phương trình luôn có hai nghiệm phân biệt với mọi giá trị của tham số m.

b) Theo hệ thức Vi – et ta có: \left\{ {\begin{array}{*{20}{c}}
  {{x_1} + {x_2} = 2m - 2} \\ 
  {{x_1}.{x_2} = 2m - 5} 
\end{array}\left( * \right)} \right.

Theo giả thiết ta có:

x1 < 1 < x2 => \left\{ {\begin{array}{*{20}{c}}
  {{x_1} - 1 < 0} \\ 
  {{x_2} - 1 > 0} 
\end{array}} \right.

=> (x1 – 1)(x2 – 1) < 0

=> x1x2 – (x1 + x2) + 1 < 0 (**)

Từ (*) và (**) ta có:

(2m – 5) – (2m – 2) + 1 < 0

=> 0.2m – 2 < 0, đúng với mọi giá trị của m

Vậy với mọi giá trị của tham số m phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn x1 < 1 < x2

Ví dụ 4

Chứng minh 4x4 + 2x2 - x - 3 = 0 có ít nhất hai nghiệm thuộc khoảng (-1; 1).

Hướng dẫn giải:

+ Đặt f(x) = 4x4 + 2x2 - x - 3

Vì f(x) là hàm đa thức nên f(x) liên tục trên R.

Suy ra f(x) liên tục trên các đoạn [-1 ; 0] và [0; 1].

+ Ta có: f(-1) = 4.(-1)4 + 2.(-1)2 - (-1) - 3 = 4

f(0) = 4.0 + 2.0 - 0 - 3 = -3

f(1) = 4.14 + 2.12 - 1 - 3 = 2

+ Vì f(-1).f(0) = 4.(-3) = -12 < 0 nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc (-1; 0)

Vì f(0) . f(1) = -3 . 2 = -6 < 0 nên phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc (0; 1)

Mà hai khoảng (-1; 0) và (0; 1) không giao nhau. Từ đó suy ra phương trình đã cho có ít nhất hai nghiệm thuộc (-1; 1). (đpcm)

Ví dụ 5

Chứng minh rằng phương trình x3 + x - 1 = 0 có nghiệm.

Hướng dẫn giải:

Đặt f(x) = x3 + x - 1

Hàm f(x) là hàm đa thức nên f(x) liên tục trên R (định lý cơ bản về tính liên tục)

Suy ra hàm f(x) liên tục trên đoạn [0; 1] (vì [0; 1] ⊂ R) (1)

Ta có: f(0) = 03 + 0 – 1 = - 1 ; f(1) = 13 + 1 – 1 = 1

⇒ f(0) . f(1) = - 1. 1 = - 1 < 0 (2)

Từ (1) và (2) suy ra f(x) = 0 có ít nhất 1 nghiệm thuộc (0; 1) (tính chất hàm số liên tục).

Vậy phương trình x3 + x - 1 = 0 có nghiệm (đpcm).

4. Bài tập Chứng minh phương trình bậc 2 với mọi m

Bài tập tự luyện

Bài 1: Cho phương trình {x^2} - mx + m - 2 = 0 (m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của tham số m.

Bài 2: Cho phương trình {x^2} - \left( {2m + 1} \right)z + {m^2} + m - 1 = 0 (m là tham số)

a) Chứng minh rằng phương trình đã cho luôn có nghiệm với mọi m.

b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m sao cho A = (2x1 – x2)(2x2 – x1) đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó.

Bài 3: Cho phương trình {x^2} - 2mx + {m^2} - \frac{1}{2} = 0 (m là tham số)

a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của tham số m.

b) Tìm m để hai nghiệm của phương trình có giá trị tuyệt đối bằng nhau.

Bài 4: Chứng minh rằng phương trình (m 2 - m + 3)x 2n - 2x - 4 = 0 với n ∈ N* luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m.

Bài 5: Chứng minh rằng với mọi a, b, c phương trình x3 + ax2 + bx + c = 0 luôn có nghiệm.

Bài 6. Chứng minh phương trình sau có ít nhất một nghiệm thuộc khoảng (-2;1): 2x5-5x3-1=0.

Bài 7. CMR phương trình:2x3-5x2+x+1=0 có ít nhất hai nghiệm.

Bài 8. CMR phương trình: 3x3 + 2x – 5 = 0 có ít nhất một nghiệm.

Bài 9. CMR phương trình: 4x4 + 2x2 – x = 3 có ít nhất hai nghiệm phân biệt trên khoảng (-1; 1).

Bài 10. CMR phương trình 2x3 – 6x + 1 = 0 có ba nghiệm phân biệt trên đoạn

Bài 11. Chứng minh phương trình sau có nghiệm:

(m2 – 4)(x – 1)6 + 5x2 – 7x + 1=0

Bài 12. Chứng minh rằng phương trình:

a. x5 + 7x4 – 3x2 + x + 2 = 0 có ít nhất một nghiệm.

b. cos2x = 2sinx – 2 có ít nhất hai nghiệm trong (-p/6; p)

c. x5 – 5x3 + 4x – 1 = 0 có năm nghiệm phân biệt

d. (m2 – 1)x5 – (11m2 – 10)x + 1 = 0 có ít nhất 1 nghiệm thuộc (0;2)*

Bài 13. Chứng minh phương trình sau luôn có nghiệm với mọi giá trị của tham số m:

(1 – m2)(x + 1)3 + x2 – x – 3 = 0.

Bài 14. Cho phương trình: m2cosx2=2sin5x+1. Chứng minh phương trình luôn có nghiệm với mọi giá trị của tham số m.

Bài 15. Chứng minh phương trình 2x2 + (2m – 1)x + m – 1 luôn có nghiệm với mọi m.

Bài 16. Chứng minh phương trình m(x - 1)3(x + 2) + 2x + 3 = 0 luôn có nghiệm với mọi m thuộc ℝ.

Bài 17. Chứng minh rằng phương trình (1 – m2)x5 – 3x – 1 = 0 luôn có nghiệm với mọi m.

Bài 18. Cho phương trình bậc hai: x2 – (m + 2)x + 2m = 0 với m là tham số. Chứng minh rằng phương trình đã cho luôn có nghiệm với mọi m

Bài 19. Chứng minh rằng phương trình x3 + mx2 – (3 + m2)x – 2m + 1 = 0 luôn có nghiệm với mọi m.

Bài 20. Cho phương trình: x2 – (2m + 1)x + m2 + m - 1 = 0 (m là tham số)

a) Chứng minh rằng phương trình đã cho luôn có nghiệm với mọi m.

b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m sao cho A = (2x1 – x2)(2x2 – x1) đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó.

Bài 21. Cho phương trình x2 – mx + m – 2 = 0 (m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của tham số m.

Bài 22. Chứng minh rằng phương trình 4x3 - 8x2 + 1 = 0 có nghiệm trong khoảng (–1; 2).

Bài 23. Chứng minh rằng phương trình x3 + x - 1 = 0 có nghiệm.

Bài 24. Chứng minh 4x4 + 2x2 - x - 3 = 0 có ít nhất hai nghiệm thuộc khoảng (-1; 1).

Bài 25. Chứng minh rằng phương trình x5 - 5x3 + 4x - 1 = 0 có đúng 5 nghiệm.

Bài 26. Chứng minh rằng phương trình (m2 - m + 3)x2n - 2x - 4 = 0 với n ∈ ℕ* luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m.

Bài 27. Chứng minh phương trình sau có ít nhất một nghiệm: x3 – 5x2 + 7 = 0.

Bài 28. Cho ba số a, b, c thoả mãn hệ thức 2a + 3b + 6c = 0. Chứng minh rằng phương trình ax2 + bx + c = 0 có ít nhất một nghiệm thuộc khoảng (0; 1).

Bài 29. Chứng minh rằng với mọi số thực a, b, c phương trình (x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a) = 0 có ít nhất một nghiệm.

Bài 30. Chứng minh phương trình x3 + x + 1 = 0 có ít nhất một nghiệm âm lớn hơn -1.

Bài 31. Chứng minh phương trình sau có ít nhất một nghiệm: x5 + x – 3 = 0

Đánh giá

0

0 đánh giá