Giải thích vì sao nếu ac < 0 thì phương trình ax^2 + bx + c (a ≠ 0) có hai nghiệm là hai số trái dấu nhau

99

Với giải Bài 3 trang 64 Toán 9 Tập 2 Cánh diều chi tiết trong Bài 3: Định lí Viète giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 3: Định lí Viète

Bài 3 trang 64 Toán 9 Tập 2: Giải thích vì sao nếu ac < 0 thì phương trình ax2 + bx + c (a ≠ 0) có hai nghiệm là hai số trái dấu nhau.

Lời giải:

Xét phương trình ax2 + bx + c (a ≠ 0) có ac < 0, theo kết quả của Bài 2, trang 59, SGK Toán lớp 9, Tập 2 thì phương trình trên luôn có hai nghiệm phân biệt.

Khi đó, theo định lí Viète, ta có: x1x2=ca.

Mà ac < 0 nên a và c là hai số trái dấu.

Lại có a ≠ 0 nên ta suy ra được ca<0, hay x1x2 < 0.

Do đó x1, x2 là hai số trái dấu nhau.

Vậy nếu ac < 0 thì phương trình ax2 + bx + c (a ≠ 0) có hai nghiệm là hai số trái dấu nhau.

Đánh giá

0

0 đánh giá