Tìm hai số u và v, biết: u + v = 15, uv = 56; u^2 + v^2 = 125, uv = 22

217

Với giải Bài 6.36 trang 29 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Luyện tập chung trang 28 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Luyện tập chung trang 28

Bài 6.36 trang 29 Toán 9 Tập 2: Tìm hai số u và v, biết:

a) u + v = 15, uv = 56;

b) u2 + v2 = 125, uv = 22.

Lời giải:

a) u + v = 15, uv = 56.

Hai số u và v cần tìm là nghiệm của phương trình: x2 – 15x + 56 = 0.

Ta có: ∆ = (–15)2 – 4.1.56 = 1 > 0 và Δ=1.

Suy ra phương trình có hai nghiệm: x1=15121=7;x2=15+121=8.

Vậy hai số cần tìm là u = 7; v = 8 hoặc u = 8; v = 7.

b) u2 + v2 = 125, uv = 22.

Ta có (u + v)2 = u2 + 2uv + v2 = (u2 + v2) + 2uv = 125 + 2.22 = 169.

Suy ra u + v = 13 hoặc u + v = –13.

Trường hợp 1.u + v = 13 và uv = 22.

Hai số u và v cần tìm là nghiệm của phương trình: x2 – 13x + 22 = 0.

Ta có: ∆ = (–13)2 – 4.1.22 = 81 > 0 và Δ=81=9.

Suy ra phương trình có hai nghiệm: x1=13+921=11;x2=13921=2.

Khi đó, hai số cần tìm là u = 11; v = 2 hoặc u = 2; v = 11.

Trường hợp 2.u + v = –13 và uv = 22.

Hai số u và v cần tìm là nghiệm của phương trình: x2 + 13x + 22 = 0.

Ta có: ∆ = 132 – 4.1.22 = 81 > 0 và Δ=81=9.

Suy ra phương trình có hai nghiệm: x1=13+921=2;x2=13921=11.

Khi đó, hai số cần tìm là u = –11; v = –2 hoặc u = –2; v = –11.

Vậy các cặp số (u; v) cần tìm là: (11; 2); (2; 11); (–11; –2); (–2; –11).

Đánh giá

0

0 đánh giá