Giải bài toán quy hoạch tuyến tính sau: F(x; y) = x + 2y → min với các ràng buộc

249

Với giải Luyện tập 3 trang 32 Chuyên đề Toán 12 Kết nối tri thức chi tiết trong Bài 3: Vận dụng hệ bất phương trình bậc nhất hai ẩn để giải quyết một số bài toán quy hoạch tuyến tính giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 12. Mời các bạn đón xem:

Giải Chuyên đề Toán 12 Bài 3: Vận dụng hệ bất phương trình bậc nhất hai ẩn để giải quyết một số bài toán quy hoạch tuyến tính

Luyện tập 3 trang 32 Chuyên đề Toán 12: Giải bài toán quy hoạch tuyến tính sau: F(x; y) = x + 2y → min

với các ràng buộc Luyện tập 3 trang 32 Chuyên đề Toán 12

Lời giải:

Miền nghiệm S của hệ bất phương trình không là miền đa giác và được tô màu như hình vẽ dưới đây:

Luyện tập 3 trang 32 Chuyên đề Toán 12

Ở đây, d­­1, d2 là các đường thẳng có phương trình lần lượt là x + y = 1 và 2x + 4y = 3.

Có ba điểm cực biên là A(0; 1), B(0,5; 0,5), C(1,5; 0).

Với mỗi số thực m, xét đường thẳng dm: x + 2y = m.

Đường thẳng dm song song với đường thẳng d2 (hay BC) và cắt Oy tại điểm 0;m2. Dễ thấy dm ∩ S ≠ 0 nếu và chỉ nếu m20,75, hay m ≥ 1,5.

Từ đó suy ra, giá trị nhỏ nhất của G(x; y) bằng 1,5, đạt được tại mọi điểm của đoạn BC.

Thực tế, mọi điểm M (x; y) thuộc đoạn BC ta đều có:

Fx;y=x+2y=122x+4y=123=1,5.

Cũng từ kết quả dm ∩ S ≠ 0 nếu và chỉ nếu m ≥ 1,5 suy ra F(x; y) không có giá trị lớn nhất trên miền S. Thực tế, F(x; y) có thể lớn tùy ý khi x, y đủ lớn.

Đánh giá

0

0 đánh giá