Một bài thi trắc nghiệm có 10 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một

211

Với giải Câu hỏi mở đầu trang 17 Chuyên đề Toán 12 Kết nối tri thức chi tiết trong Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 12. Mời các bạn đón xem:

Giải Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng

Câu hỏi mở đầu trang 17 Chuyên đề Toán 12: Một bài thi trắc nghiệm có 10 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng được 1 điểm, mỗi câu trả lời sai không được điểm (0 điểm). Thí sinh vượt qua bài thi đó nếu đạt ít nhất 5 điểm. Bạn An làm hết 10 câu trong bài thi bằng cách mỗi câu đều chọn ngẫu nhiên một phương án. Hỏi:

a) Trung bình An được bao nhiêu điểm?

b) Xác suất đển An vượt qua bài thì đó là bao nhiêu?

Lời giải:

Sau khi học xong bài này, ta giải quyết bài toán này như sau:

Gọi X là số câu trả lời đúng của An.

X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 10; p=14.

Số điểm trung bình là E(X).

Vậy trung bình An nhận được số điểm trung bình là:

E(X) = np = 10.14=2,5 điểm.

b) An vượt qua bài thi khi làm đúng ít nhất 5 câu tức là khi X ≥ 5.

Theo chú ý về phân bố nhị thức ta có:

PX5=C105.145.345+C106.146.344+C107.147.343+C108.148.342+C109.149.34+C1010.14100,0781.

Từ đó tính được xác suất vượt qua bài thi của An xấp xỉ là 7,81%.

Đánh giá

0

0 đánh giá