Tailieumoi.vn giới thiệu giải Chuyên đề học tập Toán lớp 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng sách Kết nối tri thức hay, chi tiết giúp học sinh xem và so sánh lời giải từ đó biết cách làm Chuyên đề Toán 12. Mời các bạn đón xem:
Giải Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng
- Phương án 1: Người chơi gieo một xúc xắc cân đối, đồng chất một cách độc lập liên tiếp 12 lần. Người chơi thắng nếu có ít nhất hai lần xúc xắc xuất hiện mặt 6 chấm.
- Phương án 2: Người chơi gieo một con xúc xắc cân đối, đồng chất một cách độc lập liên tiếp 6 lần. Người chơi thắng nếu có ít nhất một lần xúc xắc xuất hiện mặt 6 chấm.
Hỏi người chơi nên chọn phương án náo để xác suất thắng cao hơn?
Lời giải:
Sau khi học xong bài này, ta giải quyết được bài toán này như sau:
Xác suất nếu người chơi chọn phương án 1:
Gọi T là phép thử: “Gieo một xúc xắc cân đối, đồng chất”;
E là biến cố: “Xúc xắc xuất hiện mặt 6 chấm”.
Xét phép thử lặp với n = 12 và .
Gọi B là biến cố: “Người chơi thắng”.
B cũng là biến cố: “Trong phép thử lặp T, với n = 12, biến cố E xuất hiện ít nhất hai lần”.
Xét biến cố đối : “Trong phép thử lặp T, biến cố E xuất hiện nhiều nhất một lần”.
Ta có . Theo quy tắc cộng xác suất và công thức bernoulli, ta có:
Do đó P(B) = 1 – 0,3813 = 0,6187.
Xác suất nếu người chơi chọn phương án 2:
Gọi T là phép thử: “Gieo một xúc xắc cân đối, đồng chất”;
E là biến cố: “Xúc xắc xuất hiện mặt 6 chấm”.
Xét phép thử lặp với n = 6 và .
Gọi B là biến cố: “Người chơi thắng”.
B cũng là biến cố: “Trong phép thử lặp T, với n = 6, biến cố E xuất hiện ít nhất một lần”.
Xét biến cố đối : “Trong phép thử lặp T, biến cố E không xuất hiện”.
Khi đó .
Do đó .
Ta thấy người chơi nên chọn theo phương án 2 thì xác suất thắng cao hơn.
1. Phép thử lặp và công thức Bernoulli
a) Trong phương án 1, phép thử T được lặp lại bao nhiêu lần? Người chơi thắng khi biến cố E xuất hiện bao nhiêu lần?
b) Cũng hỏi như trên với phương án 2.
Lời giải:
a) Phép thử T được lặp lại 12 lần.
Người chơi thắng khi biến cố E xuất hiện ít nhất 2 lần.
b) Phép thử T được lặp lại 6 lần.
Người chơi thắng khi biến cố E xuất hiện ít nhất 1 lần.
Lời giải:
Xác suất để An thắng trận đấu là xác suất để An thắng ít nhất hai ván đấu.
Gọi biến cố A: “An thắng trận đấu đó”.
Trường hợp 1: An thắng cả ba ván đấu
Khi đó ta có P1 = 0,43 = 0,064.
Trường hợp 2: An thắng 2 ván đấu.
Khi đó ta có: .
Vậy P(A) = P1 + P2 = 0,064 + 0,288 = 0,352.
Luyện tập 2 trang 17 Chuyên đề Toán 12: Trở lại tình huống mở đầu.
a) Tính xác suất thắng của người chơi khi chơi theo phương án 2.
b) Qua các kết quả đã tính được, hãy cho biết người chơi nên chọn chơi theo phương án nào để xác suất thắng cao hơn.
Lời giải:
a) Gọi T là phép thử: “Gieo một xúc xắc cân đối, đồng chất”;
E là biến cố: “Xúc xắc xuất hiện mặt 6 chấm”.
Xét phép thử lặp với n = 6 và .
Gọi B là biến cố: “Người chơi thắng”.
B cũng là biến cố: “Trong phép thử lặp T, với n = 6, biến cố E xuất hiện ít nhất một lần”.
Xét biến cố đối : “Trong phép thử lặp T, biến cố E không xuất hiện”.
Khi đó .
Do đó .
b) Dựa vào kết quả ở ví dụ 1, ta thấy người chơi nên chọn theo phương án 2 thì xác suất thắng cao hơn.
2. Biến ngẫu nhiên có phân bổ nhị thức và áp dụng
a) Trung bình An được bao nhiêu điểm?
b) Xác suất đển An vượt qua bài thì đó là bao nhiêu?
Lời giải:
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Gọi X là số câu trả lời đúng của An.
X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 10; .
Số điểm trung bình là E(X).
Vậy trung bình An nhận được số điểm trung bình là:
E(X) = np = điểm.
b) An vượt qua bài thi khi làm đúng ít nhất 5 câu tức là khi X ≥ 5.
Theo chú ý về phân bố nhị thức ta có:
Từ đó tính được xác suất vượt qua bài thi của An xấp xỉ là 7,81%.
Lời giải:
Vận dụng công thức Bernoulli, ta có:
P(X = 0) = (1 – p)n.
P(X = 1) .
P(X = 2) .
….
P(X = k) .
….
P(X = n) .
Lời giải:
X |
0 |
1 |
P |
1 – p |
p |
Lời giải:
Phép thử T là: “Gieo một con xúc xắc cân đối, đồng chất”.
Biến cố E: “Số chấm xuất hiện lớn hơn 4”.
Ta có .
X là số lần xuất hiện biến cố E trong 5 lần thực hiện lặp lại phép thử T.
Người chơi nhận được ít nhất 30 điểm khi số lần xuất hiện số chấm lớn hơn 4 ít nhất 3 lần. Tức là khi X ≥ 3.
Theo chú ý về phân bố nhị thức ta có:
Vận dụng trang 20 Chuyên đề Toán 12: Giải quyết bài toán ở tình huống mở đầu.
Lời giải:
Gọi X là số câu trả lời đúng của An.
X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 10;
Số điểm trung bình là E(X).
Vậy trung bình An nhận được số điểm trung bình là:
E(X) = np = điểm.
b) An vượt qua bài thi khi làm đúng ít nhất 5 câu tức là khi X ≥ 5.
Theo chú ý về phân bố nhị thức ta có:
Từ đó tính được xác suất vượt qua bài thi của An xấp xỉ là 7,81%.
Bài tập
Lời giải:
X là số linh kiện không đạt tiêu chuẩn.
X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 10; p = 0,01.
Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn tức là X ≤ 1.
Theo chú ý về phân bố nhị thức ta có:
Vậy tỉ lệ những hộp linh kiện điện tử loại I là 99,6%.
a) 15 điểm;
b) Bị điểm âm.
Lời giải:
Gọi X là số câu trả lời đúng của thí sinh.
X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 10;
a) Thí sinh đạt 15 điểm thì có 5 câu trả lời đúng và 5 câu trả lời sai tức là X = 5.
Khi đó xác suất là .
b) Thí sinh bị điểm âm tức là thí sinh trả lời đúng nhiều nhất 1 câu tức là X ≤ 1.
Theo chú ý về phân bố nhị thức ta có:
Lời giải:
Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là .
Gọi X là số con xúc xắc xuất hiện mặt 6 chấm.
Bác Hưng thắng cuộc 1 ván khi X ≥ 2.
Xác suất để bác Hưng thắng cuộc 1 ván là: .
Gọi Y là số ván thắng của bác Hưng.
Xác suất để bác Hưng thắng ít nhất 2 ván là
Bốn bạn An, Bình, Sơn và Dương, mỗi bạn độc lập với nhau, thực hiện phép thử là lai hai cây đậu Hà Lan, trong đó cây bố có kiểu gene là Aa, cây mẹ có kiểu gene là Aa.
Gọi X là số cây con có hạt màu vàng trong số 4 cây con.
a) Lập bảng phân bố xác suất của X.
b) Hỏi trung bình có bao nhiêu cây con có hạt màu xanh?
Lời giải:
Ta vẽ sơ đồ hình cây để mô tả các kết quả có thể của kiểu gene ứng với màu hạt của cây con.
a) X là số cây con có hạt màu vàng trong số 4 cây con.
X là một biến ngẫu nhiên có phân bố nhị thức n = 4; .
Giá trị của X thuộc tập {0; 1; 2; 3; 4}.
Ta có P(X = 0) = ;
Bảng phân bố xác suất của X
b) Gọi Y là số cây con có hạt màu xanh.
Khi đó Y là biến ngẫu nhiên có phân bố nhị thức với tham số n = 4; .
Trung bình có E(Y) = cây con có hạt màu xanh.
a) Gọi tên phân bố xác suất biến ngẫu nhiên X.
b) Biết rằng lớp học có đủ ánh sáng nếu có ít nhất 4 bóng sáng. Tính xác suất để lớp học đủ ánh sáng.
c) Tính kì vọng, phương sai và độ lệch chuẩn của X.
Lời giải:
a) X là số bóng sáng.
X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 6; .
b) Lớp học đủ ánh sáng nếu có ít nhất 4 bóng sáng tức là X ≥ 4.
Khi đó .
c) E(X) = ;
a) Gọi X là số trận thắng của Sơn. Hỏi X là biến ngẫu nhiên có phân bố xác suất gì?
b) Tính xác suất để Sơn thắng Tùng trong trận đấu.
Lời giải:
a) X là số trận thắng của Sơn.
X là biến ngẫu nhiên có phân bố xác suất nhị thức với tham số n = 5; .
b) Sơn thắng Tùng trong trận đấu tức là X ≥ 3.
Ta có
a) Gọi tên phân bố xác suất biến ngẫu nhiên X.
b) Các thùng cam được phân thành ba loại theo cách sau:
Trong 20 lần lấy đó:
- Nếu tất cả các quả cam lấy ra đều đạt chất lượng thì thùng được xếp loại I;
- Nếu có 1 hoặc 2 quả cam không đạt chất lượng thì thùng được xếp loại II;
- Nếu có ít nhất 3 quả cam không đạt chất lượng thì thùng được xếp loại III.
Tính tỉ lệ các thùng cam được xếp loại I, II, III.
Lời giải:
a) X là số quả cam không đạt chất lượng.
X là biến ngẫu nhiên có phân bố xác suất nhị thức với tham số n = 20; p = 0,03.
b) Thùng cam đạt xếp loại I nếu X = 0.
P1 = P(X = 0) = 0,9720 ≈ 0,5438.
Thùng cam đạt xếp loại II nếu X = 1 hoặc X = 2.
Khi đó P2 = P(X = 1) + P(X = 2) =
Thùng cam không đạt chất lượng nếu X ≥ 3.
Khi đó P(X ≥ 3) = 1 – P1 – P2 = 1 – 0,5438 – 0,4352 = 0,021.
Xem thêm các bài giải Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác:
Bài 1: Biến ngẫu nhiên rời rạc và các số đặc trưng