Với giải Mở đầu trang 15 Chuyên đề Toán 12 Kết nối tri thức chi tiết trong Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 12. Mời các bạn đón xem:
Giải Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng
Mở đầu trang 15 Chuyên đề Toán 12: Khi mua vé tham gia một trò chơi, người chơi được chọn một trong hai phương án sau:
- Phương án 1: Người chơi gieo một xúc xắc cân đối, đồng chất một cách độc lập liên tiếp 12 lần. Người chơi thắng nếu có ít nhất hai lần xúc xắc xuất hiện mặt 6 chấm.
- Phương án 2: Người chơi gieo một con xúc xắc cân đối, đồng chất một cách độc lập liên tiếp 6 lần. Người chơi thắng nếu có ít nhất một lần xúc xắc xuất hiện mặt 6 chấm.
Hỏi người chơi nên chọn phương án náo để xác suất thắng cao hơn?
Lời giải:
Sau khi học xong bài này, ta giải quyết được bài toán này như sau:
Xác suất nếu người chơi chọn phương án 1:
Gọi T là phép thử: “Gieo một xúc xắc cân đối, đồng chất”;
E là biến cố: “Xúc xắc xuất hiện mặt 6 chấm”.
Xét phép thử lặp với n = 12 và .
Gọi B là biến cố: “Người chơi thắng”.
B cũng là biến cố: “Trong phép thử lặp T, với n = 12, biến cố E xuất hiện ít nhất hai lần”.
Xét biến cố đối : “Trong phép thử lặp T, biến cố E xuất hiện nhiều nhất một lần”.
Ta có . Theo quy tắc cộng xác suất và công thức bernoulli, ta có:
Do đó P(B) = 1 – 0,3813 = 0,6187.
Xác suất nếu người chơi chọn phương án 2:
Gọi T là phép thử: “Gieo một xúc xắc cân đối, đồng chất”;
E là biến cố: “Xúc xắc xuất hiện mặt 6 chấm”.
Xét phép thử lặp với n = 6 và .
Gọi B là biến cố: “Người chơi thắng”.
B cũng là biến cố: “Trong phép thử lặp T, với n = 6, biến cố E xuất hiện ít nhất một lần”.
Xét biến cố đối : “Trong phép thử lặp T, biến cố E không xuất hiện”.
Khi đó .
Do đó .
Ta thấy người chơi nên chọn theo phương án 2 thì xác suất thắng cao hơn.
Xem thêm lời giải Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác:
Mở đầu trang 15 Chuyên đề Toán 12: Khi mua vé tham gia một trò chơi, người chơi được chọn một trong hai phương án sau:......
HĐ1 trang 15 Chuyên đề Toán 12: Trong tình huống mở đầu. Xét phép thử T là gieo một con xúc xắc cân đối, đồng chất. Gọi E là biến cố: “Xúc xắc xuất hiện mặt 6 chấm”.......
Luyện tập 1 trang 16 Chuyên đề Toán 12: Hai bạn An và Bình thi đấu bóng bàn. Xác suất thắng của An trong một ván là 0,4. Hai bạn thi đấu đủ 3 ván đấu. Người nào có số ván đấu thắng nhiều hơn là người thắng trận đấu đó. Giả sử các ván đấu là độc lập. Tính xác suất để An thắng trong trận đấu.......
Luyện tập 2 trang 17 Chuyên đề Toán 12: Trở lại tình huống mở đầu.......
Câu hỏi mở đầu trang 17 Chuyên đề Toán 12: Một bài thi trắc nghiệm có 10 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng được 1 điểm, mỗi câu trả lời sai không được điểm (0 điểm). Thí sinh vượt qua bài thi đó nếu đạt ít nhất 5 điểm. Bạn An làm hết 10 câu trong bài thi bằng cách mỗi câu đều chọn ngẫu nhiên một phương án. Hỏi:......
HĐ2 trang 17 Chuyên đề Toán 12: Cho T là một phép thử và E là một biến cố liên quan tới phép thử T. Ta thực hiện phép thử T lặp lại n lần một cách độc lập. Ở mỗi lần thực hiện phép thử T, biến cố E có xác suất xuất hiện bằng p, tức là P(E) = p, 0 < p < 1. Gọi X là số lần xuất hiện biến cố E trong n lần thực hiện lặp lại phép thử T. Tính P(X = k) với k ∈ {0; 1; …; n}.......
Câu hỏi trang 17 Chuyên đề Toán 12: Viết bảng phân bố xác suất của biến ngẫu nhiên có phân bố Bernoulli.......
Luyện tập 3 trang 18 Chuyên đề Toán 12: Khi tham gia một trò chơi, người chơi gieo một con xúc xắc cân đối, đồng chất một cách độc lập liên tiếp 5 lần. Mỗi lần gieo nếu số chấm xuất hiện lớn hơn 4 thì người chơi được 10 điểm. Tính xác suất để người chơi nhận được ít nhất 30 điểm.......
Vận dụng trang 20 Chuyên đề Toán 12: Giải quyết bài toán ở tình huống mở đầu.......
Bài 1.6 trang 20 Chuyên đề Toán 12: Tại một nhà máy sản xuất linh kiện điện tử, các linh kiện được xếp vào từng hộp một cách độc lập, mỗi hộp 10 linh kiện. Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn. Biết rằng xác suất để nhà máy sản xuất ra một linh kiện điện tử không đạt tiêu chuẩn là 0,01. Hỏi tỉ lệ những hộp linh kiện điện tử loại I là bao nhiêu?......
Bài 1.7 trang 20 Chuyên đề Toán 12: Một bài thi trắc nghiệm gồm 10 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng được 4 điểm, mỗi câu trả lời sai trừ 1 điểm. Một thí sinh làm bài bằng cách ở mỗi câu hỏi chọn ngẫu nhiên một phương án trả lời. Tính xác suất để thí sinh đó sau khi hoàn thành hết 10 câu trong bài thi, có kết quả:.......
Bài 1.8 trang 20 Chuyên đề Toán 12: Trong một trò chơi, mỗi ván người chơi gieo đồng thời 3 xúc xắc cân đối, đồng chất. Nếu có ít nhất 2 xúc xắc xuất hiện mặt 6 chấm thì người chơi giành chiến thắng ván chơi đó. Bác Hưng tham gia chơi 3 ván. Tính xác suất để bác Hưng thắng ít nhất 2 ván......
Bài 1.9 trang 20 Chuyên đề Toán 12: Màu hạt của đậu Hà Lan có hai kiểu hình: màu vàng và màu xanh. Có hai gene ứng với hai kiểu hình này là allele trội A và allele lặn a. Khi cho lai hai cây đậu Hà Lan, cây con lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ để hình thành một cặp gene......
Bài 1.10 trang 21 Chuyên đề Toán 12: Trong một lớp học có 6 bóng đèn hoạt động độc lập với nhau. Mỗi bóng có xác suất bị hỏng là 0,25. Gọi X là số bóng sáng......
Bài 1.11 trang 21 Chuyên đề Toán 12: Sơn và Tùng thi đấu bóng bàn với nhau. Trận đấu gồm 5 ván độc lập. Xác suất thắng của Sơn trong mỗi ván là . Biết rằng mỗi ván không có kết quả hòa. Người thắng trận đấu nếu thắng ít nhất 3 ván đấu.......
Bài 1.12 trang 21 Chuyên đề Toán 12: Cam xuất khẩu được đóng thành từng thùng. Xác suất để một quả cam không đạt chất lượng là 0,03. Vì số lượng cam trong mỗi thùng rất lớn nên không thể kiểm tra toàn bộ số cam trong thùng, người ta lấy ngẫu nhiên từ thùng cam 20 lần một cách độc lập, mỗi lần lấy 1 quả để kiểm tra rồi trả lại nó vào thùng. Gọi X là số quả cam không đạt chất lượng......
Xem thêm các bài giải Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác: