Giải SGK Toán 7 (Kết nối tri thức) Bài tập cuối chương 3

6.3 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 7 Bài tập cuối chương 3 chi tiết sách Toán 7 Tập 1 Kết nối tri thức với cuộc sống giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài tập cuối chương 3

Video bài giảng Bài tập cuối chương 3 - Kết nối tri thức

Giải Toán 7 trang 59 Tập 1

Bài 3.32 trang 59 Toán lớp 7: Chứng minh rằng: Cho điểm A và đường thẳng d thì có duy nhất đường thẳng đi qua A và vuông góc với d, tức là nếu có hai đường thẳng đi qua A vuông góc với d thì chúng phải trùng nhau.

Phương pháp giải:

Giả sử có 2 đường thẳng đi qua A và vuông góc với d. Ta sẽ chứng minh 2 đường này trùng nhau

Lời giải:

Giả sử có 2 đường thẳng a và a’ đi qua A và vuông góc với d.

Vì a d, mà a’ d nên a // a’ (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Mà A d, A d’

aa

Vậy có duy nhất đường thẳng đi qua A và vuông góc với d

Bài 3.33 trang 59 Toán lớp 7: Vẽ ba đường thẳng phân biệt a,b,c sao cho a//b, b//c và hai đường thẳng phân biệt m, n cùng vuông góc với a. Hỏi trên hình có bao nhiêu cặp đường thẳng song song, có bao nhiêu cặp đường thẳng vuông góc?

Phương pháp giải:

+) Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau

+) Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia

+) Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau

Lời giải:

Ta có: +) a // b, b // c nên a // c ( Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau)

+) m  a; n a nên m // n (Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Theo định lý “Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia, ta có:

+) a // b; a n nên b n

+) a // b; a m nên b m

+) a // c; a n nên c n

+) a // c; a m nên c m

Vậy các cặp đường thẳng song song là: a // b ; a // c ; b // c; m // n

Các cặp đường thẳng vuôn góc là: b n; b m; c n; c m; a n; a m

Bài 3.34 trang 59 Toán lớp 7: Cho Hình 3.50, trong đó hai tia Ax và By nằm trên hai đường thẳng song song. Chứng minh rằng C^=A^+B^

Phương pháp giải:

Kẻ đường thẳng qua C và song song với Ax

Sử dụng Tính chất hai đường thẳng song song

Lời giải:

Qua C kẻ đường thẳng d song song với Ax

Vì Ax // By nên d // By

Vì d // Ax nên A^=C1^(2 góc so le trong)

Vì d // By nên B^=C2^ (2 góc so le trong)

Mà C^=C1^+C2^

Vậy C^=A^+B^(đpcm)

Bài 3.35 trang 59 Toán lớp 7: Cho Hình 3.51, trong đó Ox và Ox’ là hai tia đối nhau

a) Tính tổng số đo ba góc O1, O2, O3 .

Gợi ý: O1^+O2^+O3^=(O1^+O2^)+O3^, trong đó O1^+O2^=xOy^

b) Cho O1^=60,O2^=70. Tính O2^

Phương pháp giải:

2 góc kề bù có tổng số đo là 180 độ

Lời giải:

a) Ta có: O1^+O2^+O3^=(O1^+O2^)+O3^=xOy^+O3^, mà xOy^+O3^= 180 ( 2 góc kề bù)

Vậy O1^+O2^+O3^=180

b) Vì O1^+O2^+O3^=180

60+O2^+70=180O2^=1806070=70

Vậy O2^=70

Bài 3.36 trang 59 Toán lớp 7: Cho Hình 3.52, biết xOy^=120,yOz^=110. Tính số đo góc zOx.

Gợi ý: Kẻ thêm tia đối của tia Oy

Phương pháp giải:

Kẻ tia đối của tia Oy

2 góc kề bù có tổng số đo là 180 độ

Lời giải:

Kẻ Ot là tia đối của tia Oy.

Ta được:+) O1^+xOy^=180 ( 2 góc kề bù)

O1^+120=180O1^=180120=60

+) O2^+yOz^=180( 2 góc kề bù)

Vì Ot nằm giữa 2 tia Ox và Oz nên xOz^=O1^+O2^=60+70=130

Vậy zOx^=130

Lý thuyết Chương 3: Góc và đường thẳng song song

1. Góc ở vị trí đặc biệt

a) Hai góc kề bù

• Định nghĩa: Hai góc có một cạnh chung, hai cạnh còn lại là hai tia đối nhau được gọi là hai góc kề bù.

• Tính chất: Hai góc kề bù có tổng số đo bằng 180°.

+ Góc xOy^ và yOz^ có cạnh Oy chung; Ox và Oz là hai tia đối nhau. Do đó xOy^ và yOz^ được gọi là hai góc kề bù.

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Vì xOy^ và yOz^ là hai góc kề bù nên xOy^+yOz^=180°.

• Hai góc kề bù được hiểu là hai góc vừa kề nhau, vừa bù nhau. Trong đó:

Hai góc kề nhau là hai góc có một cạnh chung và hai cạnh còn lại nằm khác phía nhau đối với đường thẳng chứa cạnh chung đó.

• Nếu điểm M nằm trong góc xOy thì ta nói tia OM nằm giữa hai cạnh (hai tia) Ox và Oy của góc xOy. Khi đó ta có: xOM^+MOy^=xOy^

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

b) Hai góc đối đỉnh

• Định nghĩa: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

• Tính chất: Hai góc đối đỉnh thì bằng nhau.

Ví dụ:

Hai đường thẳng xx'yy' cắt nhau tại O. Khi đó Ox và Ox' là hai tia đối nhau; Oy và Oy' là hai tia đối nhau. Nên ta có các cặp góc đối đỉnh là: xOy^ và x'Oy'^xOy'^ và x'Oy^.

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Có xOy^ và x'Oy'^ là hai góc đối thì xOy^=x'Oy'^.

• Hai đường thẳng xx'yy' cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc. Kí hiệu là: xx'yy'.

Ví dụ: Hai đường thẳng xx'yy' cắt nhau tại O sao cho xOy^=90° thì xx'yy'.

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

2. Tia phân giác của một góc

• Định nghĩa: Tia nằm giữa hai cạnh của một góc và tạo với hai cạnh ấy hai góc bằng nhau được gọi là tia phân giác của góc đó.

• Tính chất: Khi Oz là tia phân giác của góc xOy thì xOz^=yOz^=12xOy^.

• Đường thẳng chứa tia phân giác của một góc gọi là đường phân giác của góc đó.

Ví dụ:

+ Cho xOy^=80° và Oz là tia phân giác của góc xOy. Khi đó ta có:

xOz^=yOz^=12xOy^=1280°=40°

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

3. Các góc tạo bởi một đường thẳng cắt hai đường thẳng

• Cho đường thẳng c cắt hai đường thẳng a và b lần lượt tại A và B tạo thành bốn góc đỉnh A và bốn góc đỉnh B. Khi đó ta có:

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

  + Các cặp góc so le trong là: A3 và B1; A4 và B2.

  + Các cặp góc đồng vị là: A1 và B1; A2 và B2; A3 và B3; A4 và B4.

  + Các cặp góc trong cùng phía là: A4 và B1; A3 và B2.

• Nếu đường thẳng c cắt hai đường thẳng phân biệt a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì:

  + Hai góc so le trong còn lại bằng nhau.

  + Hai góc đồng vị bằng nhau.

Ví dụ:

+ Cho đường thẳng c cắt hai đường thẳng phân biệt a, b lần lượt tại A và B.

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Nói rõ A4^;B2^ là cặp góc so le trong

Nếu A4^=B2^ thì A3^=B1^A1^=B1^;A2^=B2^;  A3^=B3^;  A4^=B4^ (cặp góc so le trong còn lại và các cặp góc đồng vị).

4. Dấu hiệu nhận biết hai đường thẳng song song

• Nếu đường thẳng c cắt hai đường thẳng phân biệt a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau hoặc một cặp góc đồng vị bằng nhau thì a và b song song với nhau. Kí hiệu là: a // b.

• Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.

5. Tiên đề Euclid về đường thẳng song song

• Tiên đề Euclid: Qua một điểm ở ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.

• Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại.

6. Tính chất của hai đường thẳng song song

• Nếu một đường thẳng cắt hai đường thẳng song song thì:

+ Hai góc so le trong bằng nhau;

+ Hai góc đồng vị bằng nhau.

Ví dụ: Cho xy // x'y' và BAy^=50°. Tính ABx'^ và y'Bz'^

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Vì xy // x'y'ABx'^=BAy^ (hai góc so le trong). Do đó ABx'^=50°

Vì xy // x'y'y'Bz'^=BAy^ (hai góc đồng vị). Do đó y'Bz'^=50°

• Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.

Ví dụ: Cho xy // x'y' và zz'xx' thì zz'yy'

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

• Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.

Ví dụ: Cho a // b và c // b thì a // c

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

7. Định lí. Giả thiết và kết luận của định lí

• Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:

Nếu … thì …

+ Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí.

+ Phần sau từ “thì” là kết luận của định lí.

Giả tiết, kết luận viết tắt tương ứng là GT và KL.

• Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết suy ra kết luận của định lí.

Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 58

Bài 12: Tổng các góc trong một tam giác

Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Luyện tập chung trang 68

Đánh giá

0

0 đánh giá