Giải Toán 7 trang 59 Tập 1 Kết nối tri thức

289
Với Giải toán lớp 7 trang 59 Tập 1 Kết nối tri thức chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải Toán 7 trang 59 Tập 1 Kết nối tri thức

Bài 3.32 trang 59 Toán lớp 7: Chứng minh rằng: Cho điểm A và đường thẳng d thì có duy nhất đường thẳng đi qua A và vuông góc với d, tức là nếu có hai đường thẳng đi qua A vuông góc với d thì chúng phải trùng nhau.

Phương pháp giải:

Giả sử có 2 đường thẳng đi qua A và vuông góc với d. Ta sẽ chứng minh 2 đường này trùng nhau

Lời giải:

Giả sử có 2 đường thẳng a và a’ đi qua A và vuông góc với d.

Vì a d, mà a’ d nên a // a’ (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Mà A d, A d’

aa

Vậy có duy nhất đường thẳng đi qua A và vuông góc với d

Bài 3.33 trang 59 Toán lớp 7: Vẽ ba đường thẳng phân biệt a,b,c sao cho a//b, b//c và hai đường thẳng phân biệt m, n cùng vuông góc với a. Hỏi trên hình có bao nhiêu cặp đường thẳng song song, có bao nhiêu cặp đường thẳng vuông góc?

Phương pháp giải:

+) Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau

+) Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia

+) Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau

Lời giải:

Ta có: +) a // b, b // c nên a // c ( Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau)

+) m  a; n a nên m // n (Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Theo định lý “Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia, ta có:

+) a // b; a n nên b n

+) a // b; a m nên b m

+) a // c; a n nên c n

+) a // c; a m nên c m

Vậy các cặp đường thẳng song song là: a // b ; a // c ; b // c; m // n

Các cặp đường thẳng vuôn góc là: b n; b m; c n; c m; a n; a m

Bài 3.34 trang 59 Toán lớp 7: Cho Hình 3.50, trong đó hai tia Ax và By nằm trên hai đường thẳng song song. Chứng minh rằng C^=A^+B^

Phương pháp giải:

Kẻ đường thẳng qua C và song song với Ax

Sử dụng Tính chất hai đường thẳng song song

Lời giải:

Qua C kẻ đường thẳng d song song với Ax

Vì Ax // By nên d // By

Vì d // Ax nên A^=C1^(2 góc so le trong)

Vì d // By nên B^=C2^ (2 góc so le trong)

Mà C^=C1^+C2^

Vậy C^=A^+B^(đpcm)

Bài 3.35 trang 59 Toán lớp 7: Cho Hình 3.51, trong đó Ox và Ox’ là hai tia đối nhau

a) Tính tổng số đo ba góc O1, O2, O3 .

Gợi ý: O1^+O2^+O3^=(O1^+O2^)+O3^, trong đó O1^+O2^=xOy^

b) Cho O1^=60,O2^=70. Tính O2^

Phương pháp giải:

2 góc kề bù có tổng số đo là 180 độ

Lời giải:

a) Ta có: O1^+O2^+O3^=(O1^+O2^)+O3^=xOy^+O3^, mà xOy^+O3^= 180 ( 2 góc kề bù)

Vậy O1^+O2^+O3^=180

b) Vì O1^+O2^+O3^=180

60+O2^+70=180O2^=1806070=70

Vậy O2^=70

Bài 3.36 trang 59 Toán lớp 7: Cho Hình 3.52, biết xOy^=120,yOz^=110. Tính số đo góc zOx.

Gợi ý: Kẻ thêm tia đối của tia Oy

Phương pháp giải:

Kẻ tia đối của tia Oy

2 góc kề bù có tổng số đo là 180 độ

Lời giải:

Kẻ Ot là tia đối của tia Oy.

Ta được:+) O1^+xOy^=180 ( 2 góc kề bù)

O1^+120=180O1^=180120=60

+) O2^+yOz^=180( 2 góc kề bù)

Vì Ot nằm giữa 2 tia Ox và Oz nên xOz^=O1^+O2^=60+70=130

Vậy zOx^=130

Đánh giá

0

0 đánh giá