Bài 3.33 trang 59 Toán 7 Tập 1 | Kết nối tri thức Giải Toán lớp 7

2.8 K

Với giải Bài 3.33 trang 59 Toán lớp 7 Kết nối tri thức với cuộc sống chi tiết trong Bài tập cuối chương III giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài tập cuối chương 3

Bài 3.33 trang 59 Toán lớp 7: Vẽ ba đường thẳng phân biệt a,b,c sao cho a//b, b//c và hai đường thẳng phân biệt m, n cùng vuông góc với a. Hỏi trên hình có bao nhiêu cặp đường thẳng song song, có bao nhiêu cặp đường thẳng vuông góc?

Phương pháp giải:

+) Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau

+) Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia

+) Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau

Lời giải:

Ta có: +) a // b, b // c nên a // c ( Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau)

+) m  a; n a nên m // n (Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Theo định lý “Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia, ta có:

+) a // b; a n nên b n

+) a // b; a m nên b m

+) a // c; a n nên c n

+) a // c; a m nên c m

Vậy các cặp đường thẳng song song là: a // b ; a // c ; b // c; m // n

Các cặp đường thẳng vuôn góc là: b n; b m; c n; c m; a n; a m

Bài tập vận dụng:

Bài 1. Cho hình vẽ dưới đây. Biết Ax song song với Cy.

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Chứng minh rằng xAB^+BCy^=ABC^

Hướng dẫn giải

GT

Ax // Cy

KL

xAB^+BCy^=ABC^ 

Qua B, kẻ đường thẳng mn song song với đường thẳng chứa tia Ax.

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Vì Ax // mn nên xAB^=B1^ (hai góc so le trong)  (1)

Vì Ax // mn mà Ax //Cy (giả thiết)

Do đó: mn // Cy (tính chất hai đường thẳng song song)

Vì mn // Cy nên BCy^=B2^ (hai góc so le trong) (2)

Từ (1) và (2) ta có: xAB^+BCy^=B1^+B2^

Mà ABC^=B1^+B2^

Vậy xAB^+BCy^=ABC^ (đpcm)

Bài 2. Cho hình vẽ, biết mn//ab và xHm^=120°.

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Tính các góc còn lại trong hình vẽ.

Hướng dẫn giải

Ta có: nHy^=xHm^ (hai góc đối đỉnh)

nHy^=120°

Ta có: xHm^+xHn^=180° (hai góc kề bù)

Thay số: 120°+xHn^=180°

xHn^=180°120°

xHn^=60°

Có: mHy^=xHn^ (hai góc đối đỉnh)

mHy^=60°

Vì mn//ab nên:

xKb^=mHy^ (hai góc so le trong) xKb^=60°

xKa^=xHm^ (hai góc đồng vị) xKa^=120°

aKy^=mHy^ (hai góc đồng vị) aKy^=60°

bKy^=nHy^ (hai góc đồng vị) bKy^=120°

Vậy nHy^=120°xHn^=60°mHy^=60°xKb^=60°xKa^=120°aKy^=60°bKy^=120°.

Bài 3. Cho hình vẽ dưới đây, biết mAt^=125°. Tính số đo các góc còn lại trong hình vẽ.

Ôn tập chương 3 (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Ta có: nAp^=mAt^ (hai góc đối đỉnh)

nAp^=125°

Ta có:     mAt^+nAt^=180° (hai góc kề bù)

Thay số: 125°+nAt^=180°

nAt^=180°125°

nAt^=55°

Lại có: mAp^=nAt^ (hai góc đối đỉnh)

mAp^=55°

Vậy: nAp^=125°nAt^=55°mAp^=55°.

Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Đánh giá

0

0 đánh giá