Với giải Bài 3.18 trang 53 Toán lớp 7 Kết nối tri thức với cuộc sống chi tiết trong Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song
Bài 3.18 trang 53 Toán lớp 7: Cho Hình 3.40
a) Giải thích tại sao Am//By.
b) Tính
Phương pháp giải:
a) Sử dụng dấu hiệu nhận biết 2 đường thẳng song song.
b) Sử dụng tính chất của 2 đường thẳng song song
Lời giải:
a) Vì , mà 2 góc này ở vị trí so le trong nên Am // By ( Dấu hiệu nhận biết 2 đường thẳng song song.)
b) Vì Am // By nên ( 2 góc đồng vị), mà .
Bài tập vận dụng:
Bài 1. Cho hình vẽ, biết và .
Tính các góc còn lại trong hình vẽ.
Hướng dẫn giải
Ta có: (hai góc đối đỉnh)
Ta có: (hai góc kề bù)
Thay số:
Có: (hai góc đối đỉnh)
Vì nên:
(hai góc so le trong)
(hai góc đồng vị)
(hai góc đồng vị)
(hai góc đồng vị)
Vậy ; ; ; ; ; ; .
Bài 2. Cho tam giác ABC. Vẽ đường thẳng m đi qua A và song song với BC. Vẽ đường thẳng n đi qua B và song song với AC. Có thể vẽ được bao nhiêu đường thẳng m, bao nhiêu đường thẳng n? Vì sao?
Hướng dẫn giải
Vì theo tiên đề Euclid, qua điểm A ở ngoài BC, chỉ có một đường thẳng song song với BC. Nên chỉ vẽ được một đường thẳng m duy nhất.
Vì theo tiên đề Euclid, qua điểm B ở ngoài AC, chỉ có một đường thẳng song song với AC. Nên chỉ vẽ được một đường thẳng n duy nhất.
Bài 3. Cho hình dưới đây. Giải thích tại sao:
a) ;
b) ;
c) .
Hướng dẫn giải
a) Ta có:
Mà hai góc ở vị trí so le trong.
Do đó (dấu hiệu nhận biết hai đường thẳng song song).
b) Ta có:
Mà hai góc ở vị trí đồng vị.
Do đó (dấu hiệu nhận biết hai đường thẳng song song).
c) Ta có: (theo câu a) và (theo câu b)
Do đó (tính chất hai đường thẳng song song).
Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song