Tailieumoi.vn xin giới thiệu Bài tập Toán lớp 7 Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song sách Kết nối tri thức. Bài viết gồm 20 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 7. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song. Mời các bạn đón xem:
Bài tập Toán lớp 7 Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song
A. Bài tập Tiên đề Euclid. Tính chất của hai đường thẳng song song
A1. Bài tập tự luận
Bài 1. Cho hình vẽ, biết và .
Tính các góc còn lại trong hình vẽ.
Hướng dẫn giải
Ta có: (hai góc đối đỉnh)
Ta có: (hai góc kề bù)
Thay số:
Có: (hai góc đối đỉnh)
Vì nên:
(hai góc so le trong)
(hai góc đồng vị)
(hai góc đồng vị)
(hai góc đồng vị)
Vậy ; ; ; ; ; ; .
Bài 2. Cho tam giác ABC. Vẽ đường thẳng m đi qua A và song song với BC. Vẽ đường thẳng n đi qua B và song song với AC. Có thể vẽ được bao nhiêu đường thẳng m, bao nhiêu đường thẳng n? Vì sao?
Hướng dẫn giải
Vì theo tiên đề Euclid, qua điểm A ở ngoài BC, chỉ có một đường thẳng song song với BC. Nên chỉ vẽ được một đường thẳng m duy nhất.
Vì theo tiên đề Euclid, qua điểm B ở ngoài AC, chỉ có một đường thẳng song song với AC. Nên chỉ vẽ được một đường thẳng n duy nhất.
Bài 3. Cho hình dưới đây. Giải thích tại sao:
a) ;
b) ;
c) .
Hướng dẫn giải
a) Ta có:
Mà hai góc ở vị trí so le trong.
Do đó (dấu hiệu nhận biết hai đường thẳng song song).
b) Ta có:
Mà hai góc ở vị trí đồng vị.
Do đó (dấu hiệu nhận biết hai đường thẳng song song).
c) Ta có: (theo câu a) và (theo câu b)
Do đó (tính chất hai đường thẳng song song).
A2. Bài tập trắc nghiệm
Bài 4. Ta có a, b phân biệt; nếu a // c và b // c thì:
A. ;
B. ;
C. ;
D. a // b.
Hướng dẫn giải
Đáp án đúng là: D
Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song với nhau.
Bài 5. Cho hình vẽ như bên dưới. Tính , biết .
A. 137o
B. 43o;
C. 37o;
D. 149o.
Hướng dẫn giải
Đáp án đúng là: B
Ta có và là hai góc so le trong suy ra (1)
Lại có và là hai góc kề bù suy ra (2)
Từ (1) và (2) suy ra
Vậy .
Bài 6. Cho hình vẽ bên dưới. Tính số đo góc OHC, biết MN // BC và
A. 69°;
B. 121°;
C. 59°;
D. 130°.
Hướng dẫn giải
Đáp án đúng là: B
Do MN // BC nên góc AOM và góc OHB là hai góc đồng vị do đó (1).
Lại có, góc OHB và góc OHC là hai góc kề bù nên (2).
Từ (1) và (2) suy ra .
Vậy .
Câu 7. Điền nội dung phù hợp vào chỗ trống: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng … với đường thẳng kia.”
A. vuông góc;
B. song song;
C. trùng nhau;
D. cắt nhau.
Hướng dẫn giải
Đáp án đúng là: A
Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
Câu 8. Điền cụm từ thích hợp vào chỗ trống: “Nếu một đường thẳng cắt hai đường thẳng … thì hai góc đồng vị bằng nhau.”
A. song song;
B. vuông góc;
C. giao nhau;
D. trùng nhau.
Hướng dẫn giải
Đáp án đúng là: A
Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng vị bằng nhau.
Câu 9. Cho hình vẽ bên dưới. Tính , biết và x // y.
A. 96o
B. 125o
C. 55o
D. 26o
Hướng dẫn giải
Đáp án đúng là: D
Ta có (hai góc đối đỉnh) (1)
Vì x // y nên suy ra (hai góc đồng vị) (2)
Từ (1) và (2) suy ra
Vậy .
1. Tiên đề Euclid về đường thẳng song song
• Tiên đề Euclid: Qua một điểm ở ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.
Ví dụ:
+ Cho điểm M nằm ngoài đường thẳng a thì đường thẳng b đi qua M và song song với a là duy nhất.
Chú ý:
• Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại.
Ví dụ: Cho a và b là hai đường thẳng song song với nhau. Nếu đường thẳng c cắt đường thẳng a thì cũng cắt đường thẳng b.
2. Tính chất của hai đường thẳng song song
• Nếu một đường thẳng cắt hai đường thẳng song song thì:
+ Hai góc so le trong bằng nhau;
+ Hai góc đồng vị bằng nhau.
Ví dụ: Cho và . Tính và
Vì (hai góc so le trong). Do đó
Vì (hai góc đồng vị). Do đó
• Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
Ví dụ: Cho và thì
• Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.
Ví dụ: Cho và thì
B. Lý thuyết Tiên đề Euclid. Tính chất của hai đường thẳng song song
1. Tiên đề Euclid về đường thẳng song song
• Tiên đề Euclid: Qua một điểm ở ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.
Ví dụ:
+ Cho điểm M nằm ngoài đường thẳng a thì đường thẳng b đi qua M và song song với a là duy nhất.
Chú ý:
• Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại.
Ví dụ: Cho a và b là hai đường thẳng song song với nhau. Nếu đường thẳng c cắt đường thẳng a thì cũng cắt đường thẳng b.
2. Tính chất của hai đường thẳng song song
• Nếu một đường thẳng cắt hai đường thẳng song song thì:
+ Hai góc so le trong bằng nhau;
+ Hai góc đồng vị bằng nhau.
Ví dụ: Cho và . Tính và
Vì (hai góc so le trong). Do đó
Vì (hai góc đồng vị). Do đó
• Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
Ví dụ: Cho và thì
• Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.
Ví dụ: Cho và thì