Bài 3 trang 64 Toán 11 Tập 2 Chân trời sáng tạo | Giải bài tập Toán lớp 11

678

Với giải Bài 3 trang 64 Toán 11 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3 trang 64 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a2 , có các cạnh bên đều bằng 2a .

a) Tính góc giữa SC và AB .

b) Tính diện tích hình chiếu vuông góc của tam giác SAB trên mặt phẳng (ABCD) .

Lời giải:

Bài 3 trang 64 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Ta có: AB // CD  (SC, AB) = (SC, CD) = SCD^

Xét ΔSCD , áp dụng định lí cos, ta có :

cosSCD^=SC2+CD2SD22.SC.SD=4a2+2a24a22.2a.2a=14

Do đó SCD^75,5° .

b) Gọi O=ACBD

Ta có:

ΔSAC cân tại S nên SO ⊥ AC (1)

ΔSBD cân tại S nên SO ⊥ BD (2)

Từ (1) và (2) suy ra SO ⊥ (ABCD)

Do đó O là hình chiếu vuông góc của S lên (ABCD).

Mà A, B ∈ (ABCD)

Vậy ΔOAB là hình chiếu vuông góc của ΔSAB lên (ABCD).

Ta có: AC = AB+BC=2a2+2a2=2a

Mà ABCD là hình vuông nên O là trung điểm của mỗi đường chéo.

 AO = BO = AC2=a

 SOAB=12.AO.BO=12.a.a=a22 .

Vậy diện tích hình chiếu vuông góc của tam giác SAB trên mặt phẳng (ABCD) là a22 .

Đánh giá

0

0 đánh giá