Với giải Thực hành 3 trang 62 Toán 11 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 2: Đường thẳng vuông góc với mặt phẳng
Thực hành 3 trang 62 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông với AB là cạnh góc vuông và có cạnh SA vuông góc với mặt phẳng (ABCD). Cho M, N, P, Q lần lượt là trung điểm của SB, AB, CD, SC. Chứng minh rằng:
a) AB ⊥ (MNPQ);
b) MQ ⊥ (SAB) .
Lời giải:
a) Xét tam giác SBC:
M là trung điểm SB
Q là trung điểm SC
Do đó MQ là đường trung bình của ΔSBC.
(1)
Tương tự: MN là đường trung bình của ΔSAB . Khi đó:
MN ⊥ (ABCD) ⇒ MN ⊥ AB (2)
Xét hình thang ABCD:
N là trung điểm AB
P là trung điểm CD
Do đó NP là đường trung bình của hình thang ABCD . Khi đó:
Từ (1), (2) và (3) suy ra AB ⊥ (MNPQ)
b) Ta có:
Mà BC // MQ
Do đó MQ ⊥ (SAB)
Xem thêm các lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
2. Liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng
Hoạt động khám phá 4 trang 60 Toán 11 Tập 2: Nêu nhận xét về vị trí tương đối của...
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: