Bài 2 trang 64 Toán 11 Tập 2 Chân trời sáng tạo | Giải bài tập Toán lớp 11

609

Với giải Bài 2 trang 64 Toán 11 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 2 trang 64 Toán 11 Tập 2: Cho hình vuông ABCD. Gọi H, K lần lượt là trung điểm của AB, AD. Trên đường thẳng vuông góc với (ABCD) tại H, lấy điểm S. Chứng minh rằng:

a) AC ⊥ (SHK) ;

b) CK ⊥ (SDH) .

Lời giải:

Bài 2 trang 64 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Xét tam giác ADB:

H là trung điểm AB

K là trung điểm AD

⇒ HK là đường trung bình của ΔADB.

HK // BDAC BD        ACHK

Ta có:

ACHK                                        SHABCDSHACACSHK

b) Gọi I=CKDH

Xét ΔAHD và ΔDKC:

AH = DK

HAD^=KDC^

AD = CD

⇒ ΔAHD = ΔDKC (c.g.c)

HDA^=KCD^

Ta có: DKC^+KCD^=90°

DKC^+HDA^=90°

DKI^=180°KDC^+HDA^=90°⇒ DH ⊥ CK

Mà SH ⊥ (ABCD) ⇒ SH ⊥ CK

Vậy CK ⊥ (SDH).

Đánh giá

0

0 đánh giá