Cho tam giác ABC có ba góc nhọn. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E

804

Với giải Bài 13 trang 65 SBT Toán lớp 8 Chân trời sáng tạo chi tiết trong Bài 2: Các trường hợp đồng dạng của hai tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 2: Các trường hợp đồng dạng của hai tam giác

Bài 13 trang 65 SBT Toán 8 Tập 2: Cho tam giác ABC có ba góc nhọn. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho ADE^=ACB^.

a) Chứng minh rằng ∆AED ᔕ ∆ABC.

b) Tia phân giác của BAC^ cắt DE tại M và cắt BC tại N.

Chứng minh rằng ME . NC = MD . NB.

Lời giải:

Cho tam giác ABC có ba góc nhọn. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E

a) Xét ∆AED và ∆ABC có

A^ chung; ADE^=ACB^.

Do đó ∆AED ᔕ ∆ABC (g.g)

b) Ta có ∆AED ᔕ ∆ABC suy ra AEAB=ADAC hay AEAD=ABAC (1)

• Vì AM là tia phân giác của DAE^ nên MEMD=AEAD (2)

• Vì AN là tia phân giác của BAC^ nên NBNC=ABAC (3)

Từ (1); (2) và (3) suy ra MEMD=NBNC hay ME . NC = MD . NB (đpcm).

Đánh giá

0

0 đánh giá