Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 3. Hình chiếu vuông góc của S

495

Với giải Bài 2 trang 73 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 2 trang 73 SBT Toán 11 Tập 2Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 3. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm I của cạnh AB. Biết rằng mặt bên (SAB) là tam giác vuông cân tại S. Xác định và tính góc giữa:

a) SA và (ABC);

b) SC và (SAB).

Lời giải:

Cho hình chóp S ABC có đáy là tam giác đều cạnh bằng 3 Hình chiếu vuông góc của S

a)Vì AI là hình chiếu của SA trên (ABC).

Do đó (SA, (ABC)) = (SA, AI).

Vì tam giác SAI vuông cân tại I SAI^=45°.

Vậy (SA,(ABC))=(SA,AI)=SAI^=45° .

b)Ta có tam giác ABC đều nên CI ⊥ AB, CI=332.

Ta có: Cho hình chóp S ABC có đáy là tam giác đều cạnh bằng 3 Hình chiếu vuông góc của S

Mà SC  (SAB) = S. (2)

Từ (1) và (2)  SI là hình chiếu của SC trên (SAB).

Do đó (SC, (SAB)) = (SC, SI).

Trong tam giác SAB vuông tại S, SI=12AB=32 .

Trong tam giác SCI vuông tại I, ta có tanCSI^=ICSI=3CSI^=60°.

Vậy SC,SAB=CSI^=60°.

Đánh giá

0

0 đánh giá