Cho hình chóp S.ABC có đáy là hình vuông tâm O cạnh a, SA = a căn 3

607

Với giải Bài 1 trang 73 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 1 trang 73 SBT Toán 11 Tập 2Cho hình chóp S.ABC có đáy là hình vuông tâm O cạnh a, SA = a3 và vuông góc với đáy. Xác định và tính góc giữa:

a) SB và (ABCD);

b) SC và (ABCD);

c) SD và (ABCD);

d) SB và (SAC).

Lời giải:

Cho hình chóp S ABC có đáy là hình vuông tâm O cạnh a SA =  a căn bậc hai 3

a) Ta có: Cho hình chóp S ABC có đáy là hình vuông tâm O cạnh a SA =  a căn bậc hai 3

Suy ra AB là hình chiếu của SB trên (ABCD).

Do đó (SB, (ABCD)) = (SB, AB).

Trong tam giác SAB vuông tại A, ta có:

tanSBA^=SAAB=3SBA^=60°.

Vậy (SB,(ABCD))=SBA^=60°.

b) Tương tự câu a) ta xác định được (SC, (ABCD)) = (SC, AC).

Trong tam giác SAC vuông tại A, ta có:

tanSCA^=SAAC=32SCA^50,8°.

Vậy (SC,(ABCD))=SCA^50,8°.

c) Tương tự câu a) ta xác định được (SD, (ABCD)) = (SD,AD).

Trong tam giác SAD vuông tại A, ta có:

tanSDA^=SAAD=3SDA^=60°.

Vậy (SD,(ABCD))=SDA^=60°.

d) Ta có: Cho hình chóp S ABC có đáy là hình vuông tâm O cạnh a SA =  a căn bậc hai 3

 BD ⊥ (SAC) hay BO ⊥ (SAC). (1)

Mà SB  (SAC) = S. (2)

Từ (1) và (2) suy ra SO là hình chiếu của SB trên (SAC).

Do đó: (SB, (SAC))=(SB, SO).

Trong tam giác SBO vuông tại O, ta có:

BO=12BD=a22,SB=2a.

sinBSO^=BOSB=24BSO^20,7°.

Vậy (SB,(SAC))=BSO^20,7°.

Đánh giá

0

0 đánh giá