Với giải Bài 21 trang 95 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 21 trang 95 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD thoả mãn SA = SB = SC = SD. Chứng minh rằng tồn tại một đường tròn đi qua cả bốn đỉnh của tứ giác ABCD.
Lời giải:
Gọi O là hình chiếu của S trên (ABCD). Khi đó SO ⊥ (ABCD).
Mà OA, OB, OC, OD đều nằm trên (ABCD) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC, SO ⊥ OD.
Xét tam giác SOA và tam giác SOB có:
SA = SB (gt);
SO chung
Suy ra ∆SOA = ∆SOB (cạnh huyền – cạnh góc vuông)
Do đó: OA = OB (hai cạnh tương ứng)
Tương tự: ∆SOB = ∆SOC = ∆SOD nên OB = OC = OD.
Từ đó ta có: OA = OB = OC = OD hay O là tâm đường tròn đi qua bốn đỉnh của tứ giác ABCD.
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 18 trang 95 SBT Toán 11 Tập 2: Cho hình tứ diện đều ABCD. Chứng minh AB ⊥ CD....
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: