Với giải Bài 12 trang 94 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 12 trang 94 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có Gọi H là trực tâm của tam giác ABC. Chứng minh rằng SH ⊥ (ABC).
Lời giải:
Gọi AN, CM là hai đường cao của tam giác ABC.
Khi đó trực tâm H của tam giác ABC là giao điểm của AN và CM.
Vì nên SA ⊥ SB, SA ⊥ SC.
⦁ Ta có: SA ⊥ SB, SA ⊥ SC;
SB ∩ SC = S trong (SBC).
Suy ra SA ⊥ (SBC). Do đó SA ⊥ BC.
⦁ Ta có: BC ⊥ AH, BC ⊥ SA (chứng minh trên);
SA ∩ AH = A trong (SAH).
Suy ra BC ⊥ (SAH). Do đó BC ⊥ SH.
Tương tự, ta có: AB ⊥ SH.
⦁ Ta có: AB ⊥ SH, BC ⊥ SH và AB ∩ BC = B trong (ABC).
Suy ra: SH ⊥ (ABC).
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 18 trang 95 SBT Toán 11 Tập 2: Cho hình tứ diện đều ABCD. Chứng minh AB ⊥ CD....
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: