Cho hình chóp O.ABC và điểm H không thuộc các đường thẳng AB, BC, CA

738

Với giải Bài 15 trang 95 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 15 trang 95 SBT Toán 11 Tập 2Cho hình chóp O.ABC và điểm H không thuộc các đường thẳng AB, BC, CA sao cho OHA^=OHB^=OHC^=90°. Chứng minh rằng H thuộc mặt phẳng (ABC).

Lời giải:

Cho hình chóp O.ABC và điểm H không thuộc các đường thẳng AB, BC, CA sao cho

Vì OHA^=OHB^=90° nên ta có OH ⊥ HA, OH ⊥ HB mà HA và HB cắt nhau tại H trong (HAB) nên OH ⊥ (HAB).

Vì OHB^=OHC^=90° nên ta có OH ⊥ HB, OH ⊥ HC mà HB và HC cắt nhau tại H trong (HBC) nên OH ⊥ (HBC).

Ta thấy: (HAB) và (HBC) cùng đi qua H và vuông góc với OH nên (HAB) ≡ (HBC).

Hay (HAB) ≡ (HBC) ≡ (ABC).

Suy ra: H thuộc mặt phẳng (ABC).

Đánh giá

0

0 đánh giá