Với giải Bài 13 trang 94 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 13 trang 94 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình bình hành và SA = SC, SB = SD. Gọi O là giao điểm của AC và BD. Chứng minh rằng SO ⊥ (ABCD).
Lời giải:
Vì ABCD là hình bình hành nên O là trung điểm của AC và BD.
⦁ Xét tam giác SAC có SA = SC nên tam giác SAC cân tại S.
Mà SO là đường trung tuyến của tam giác SAC.
Suy ra: SO là đường cao của tam giác SAC hay SO ⊥ AC.
⦁ Xét tam giác SBD có SB = SD nên tam giác SBD cân tại S.
Mà SO là đường trung tuyến của tam giác SBD.
Suy ra: SO là đường cao của tam giác SBD hay SO ⊥ BD.
Ta có: SO ⊥ AC, SO ⊥ BD;
AC ∩ BD = O trong (ABCD).
Suy ra: SO ⊥ (ABCD).
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 18 trang 95 SBT Toán 11 Tập 2: Cho hình tứ diện đều ABCD. Chứng minh AB ⊥ CD....
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: