Giải SGK Toán 11 Bài 2 (Cánh diều): Đường thẳng vuông góc với mặt phẳng

3 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 2: Đường thẳng vuông góc với mặt phẳng chi tiết sách Toán 11 Tập 2 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Giải Toán 11 trang 80 Tập 2

Câu hỏi khởi động trang 80 Toán 11 Tập 2: Trong Hình 9, cột gỗ thẳng đứng và sàn nhà nằm ngang gợi nên hình ảnh đường thẳng vuông góc với mặt phẳng.

Câu hỏi khởi động trang 80 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Đường thẳng vuông góc với mặt phẳng được hiểu như thế nào?

Lời giải:

Đường thẳng vuông góc với mặt phẳng được hiểu là đường thẳng nằm thẳng đứng so với mặt phẳng.

1. Định nghĩa

Hoạt động 1 trang 80 Toán 11 Tập 2: Hình 10 mô tả một người thợ xây đang thả dây dọi vuông góc với nền nhà. Coi dây dọi như đường thẳng d và nền nhà như mặt phẳng (P), khi đó Hình 10 gợi nên hình ảnh đường thẳng d vuông góc với mặt phẳng (P). Người thợ xây đặt chiếc thước thẳng ở một vị trí tùy ý trên nền nhà. Coi chiếc thước thẳng đó là đường thẳng a trong mặt phẳng (P), nêu dự đoán về mối liên hệ giữa đường thẳng d và đường thẳng a.

Hoạt động 1 trang 80 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Quan sát Hình 10 ta dự đoán rằng đường thẳng d và đường thẳng a vuông góc với nhau.

2. Điều kiện để đường thẳng vuông góc với mặt phẳng

Giải Toán 11 trang 81 Tập 2

Hoạt động 2 trang 81 Toán 11 Tập 2: Hình 12 mô tả cửa tròn xoay, ở đó trục cửa và hai mép cửa gợi nên hình ảnh các đường thẳng d, a, b; sàn nhà coi như mặt phẳng (P) chứa a và b. Hỏi đường thẳng d có vuông góc với mặt phẳng (P) hay không?

Hoạt động 2 trang 81 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Ta thấy: khi a và b thay đổi (đóng mở cửa) thì đường thẳng d luôn vuông góc với cả hai đường thẳng a và b.

Như vậy ta có thể nói rằng đường thẳng d vuông góc với mọi đường thẳng a và b trong mặt phẳng (P) hay đường thẳng d vuông góc với mặt phẳng (P).

Luyện tập 1 trang 81 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA ⊥ (ABCD). Chứng minh rằng BD ⊥ (SAC).

Lời giải:

Luyện tập 1 trang 81 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Do SA ⊥ (ABCD), BD ⊂ (ABCD).

Suy ra SA ⊥ BD hay BD ⊥ SA.

Vì ABCD là hình thoi nên BD ⊥ AC.

Ta có: BD ⊥ SA, BD ⊥ AC; SA ∩ AC = A trong (SAC)

Suy ra BD ⊥ (SAC).

3. Tính chất

Hoạt động 3 trang 81 Toán 11 Tập 2: Cho điểm O và đường thẳng a. Gọi b, c là hai đường thẳng phân biệt cùng đi qua điểm O và cùng vuông góc với đường thẳng a (Hình 14).

Hoạt động 3 trang 81 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Mặt phẳng (P) đi qua hai đường thẳng b, c có vuông góc với đường thẳng a hay không?

b) Có bao nhiêu mặt phẳng đi qua điểm O và vuông góc với đường thẳng a?

Lời giải:

a) Ta có: a ⊥ b, a ⊥ c và b ∩ c = O trong (P).

Suy ra a ⊥ (P).

Vậy mặt phẳng (P) đi qua hai đường thẳng b, c có vuông góc với đường thẳng a.

b) Theo câu a, đường thẳng a vuông góc với mặt phẳng (P), với mặt phẳng (P) đi qua hai đường thẳng b, c cùng vuông góc với đường thẳng a và b ∩ c = O.

Mà qua hai đường thẳng b và c cắt nhau, có một và chỉ một mặt phẳng, tức là tồn tại duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau b và c.

Vậy chỉ có duy nhất 1 mặt phẳng đi qua điểm O và vuông góc với a.

Luyện tập 2 trang 81 Toán 11 Tập 2: Hình 17 mô tả một cửa gỗ có dạng hình chữ nhật, ở đó nẹp cửa và mép dưới cửa lần lượt gợi nên hình ảnh hai đường thẳng d và a. Điểm M là vị trí giao giữa mép gắn bản lề và mép dưới của cửa. Hãy giải thích tại sao khi quay cánh cửa, mép dưới cửa là những đường thẳng a luôn nằm trên mặt phẳng đi qua điểm M cố định và vuông góc với đường thẳng d.

Luyện tập 2 trang 81 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Giả sử (P) là mặt phẳng đi qua M và vuông góc với đường thẳng d.

Khi đó ta có đường thẳng d’ đi qua M và d // d’ nên d’ ⊥ (P) tại M.

Lại có a đi qua M và a ⊥ d’ nên a ⊂ (P).

Vậy đường thẳng a luôn nằm trên mặt phẳng đi qua điểm M cố định và vuông góc với đường thẳng d.

Giải Toán 11 trang 82 Tập 2

Hoạt động 4 trang 82 Toán 11 Tập 2: Cho mặt phẳng (P) và điểm O. Gọi a, b là hai đường thẳng cắt nhau thuộc mặt phẳng (P) sao cho a và b không đi qua O. Lấy hai mặt phẳng (Q), (R) lần lượt đi qua O và vuông góc a, b (Hình 18).

Hoạt động 4 trang 82 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Giao tuyến ∆ của hai mặt phẳng (Q), (R) có vuông góc với mặt phẳng (P) hay không?

b) Có bao nhiêu đường thẳng đi qua O và vuông góc với (P)?

Lời giải:

a) Do a ⊥ (Q) và ∆ ⊂ (Q) nên a ⊥ ∆.

          b ⊥ (R) và ∆ ⊂ (R) nên b ⊥ ∆.

Mà a, b là hai đường thẳng cắt nhau thuộc mặt phẳng (P)

Suy ra ∆ ⊥ (P).

Vậy giao tuyến ∆ của hai mặt phẳng (Q), (R) có vuông góc với mặt phẳng (P).

b) Theo câu a, ta có ∆ ⊥ (P) với ∆ là giao tuyến của hai mặt phẳng (Q), (R); với hai mặt phẳng (Q), (R) lần lượt đi qua O và vuông góc a, b.

Vì hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng. Tức là tồn tại duy nhất một đường thẳng ∆ đi qua O (điểm chung của 2 mặt phẳng (Q) và (R)).

Vậy có duy nhất một đường thẳng đi qua O và vuông góc với (P).

Luyện tập 3 trang 82 Toán 11 Tập 2: Cho mặt phẳng (P) và đường thẳng a cắt nhau tại điểm O, a ⊥ (P). Giả sử điểm M thỏa mãn OM ⊥ (P). Chứng minh rằng M ∈ a.

Lời giải:

Luyện tập 3 trang 82 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Ta có a ⊥ (P) tại O.

Mặt khác, có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước, tức là tồn tại duy nhất đường thẳng a đi qua điểm O và vuông góc với mặt phẳng (P).

Nên nếu OM ⊥ (P) thì M ∈ a.

4. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng

Giải Toán 11 trang 83 Tập 2

Hoạt động 5 trang 83 Toán 11 Tập 2: Trong Hình 19, hai thanh sắt và bản phẳng để ngồi gợi nên hình ảnh hai đường thẳng a, b và mặt phẳng (P).

Quan sát Hình 19 và cho biết:

a) Nếu hai đường thẳng a và b song song với nhau và mặt phẳng (P) vuông góc với đường thẳng a thì mặt phẳng (P) có vuông góc với đường thẳng b hay không;

b) Nếu hai đường thẳng a và b cùng vuông góc với mặt phẳng (P) thì chúng có song song với nhau hay không.

Hoạt động 5 trang 83 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Quan sát Hình 19 ta thấy:

a) Nếu hai đường thẳng a và b song song với nhau và mặt phẳng (P) vuông góc với đường thẳng a thì mặt phẳng (P) có vuông góc với đường thẳng b.

b) Nếu hai đường thẳng a và b cùng vuông góc với mặt phẳng (P) thì chúng có song song với nhau.

Giải Toán 11 trang 84 Tập 2

Luyện tập 4 trang 84 Toán 11 Tập 2: Cho đường thẳng d và mặt phẳng (P) cắt nhau tại điểm O. Lấy các điểm A, B thuộc d và khác O; các điểm A’, B’ thuộc (P) thỏa mãn AA’ ⊥ (P), BB’ ⊥ (P). Chứng minh rằng

AA'BB'=OAOB.

Lời giải:

Luyện tập 4 trang 84 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Do AA’ ⊥ (P), BB’ ⊥ (P) nên suy ra AA’ // BB’.

Hơn nữa O, A, B thẳng hàng nên suy ra O, A’, B’ cũng thẳng hàng (tính chất phép chiếu song song).

Xét tam giác OBB’ có AA’ // BB’ nên theo hệ quả định lí Thalès ta có: AA'BB'=OAOB.

Hoạt động 6 trang 84 Toán 11 Tập 2: Trong Hình 21, hai mặt trần của nhà cao tầng và cột trụ bê tông gợi nên hình ảnh hai mặt phẳng (P), (Q) phân biệt và đường thẳng a.

Quan sát Hình 21 và cho biết:

a) Nếu hai mặt phẳng (P), (Q) song song với nhau và đường thẳng a vuông góc với mặt phẳng (P) thì đường thẳng a có vuông góc với mặt phẳng (Q) hay không;

b) Nếu hai mặt phẳng (P), (Q) cùng vuông góc với đường thẳng a thì chúng có song song với nhau hay không.

Hoạt động 6 trang 84 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Quan sát Hình 21 ta thấy:

a) Nếu hai mặt phẳng (P), (Q) song song với nhau và đường thẳng a vuông góc với mặt phẳng (P) thì đường thẳng a có vuông góc với mặt phẳng (Q).

b) Nếu hai mặt phẳng (P), (Q) cùng vuông góc với đường thẳng a thì chúng có song song với nhau.

Giải Toán 11 trang 85 Tập 2

Luyện tập 5 trang 85 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC). Mặt phẳng (P) khác với mặt phẳng (ABC), vuông góc với đường thẳng SA và lần lượt cắt các đường thẳng SB, SC tại hai điểm phân biệt B’, C’. Chứng minh rằng B’C’ // BC.

Lời giải:

Luyện tập 5 trang 85 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Ta có: (ABC) ⊥ SA, (P) ⊥ SA nên suy ra (P) // (ABC).

Dễ thấy: (SBC) ∩ (P) = B’C’ và (SBC) ∩ (ABC) = BC.

Từ các kết quả trên ta có: B’C’ // BC.

5. Phép chiếu vuông góc

Hoạt động 7 trang 85 Toán 11 Tập 2: Cho mặt phẳng (P). Xét một điểm M tuỳ ý trong không gian.

a) Có bao nhiêu đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (P)?

b) Đường thẳng d cắt mặt phẳng (P) tại bao nhiêu giao điểm?

Lời giải:

Hoạt động 7 trang 85 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Vì có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước. Nên có một đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (P).

b) Do đường thẳng d vuông góc với mặt phẳng (P) nên đường thẳng d cắt mặt phẳng (P) tại một giao điểm.

Giải Toán 11 trang 86 Tập 2

Luyện tập 6 trang 86 Toán 11 Tập 2: Cho mặt phẳng (P) và đoạn thẳng AB. Xác định hình chiếu của đoạn thẳng AB trên mặt phẳng (P).

Lời giải:

⦁ Nếu đoạn thẳng AB vuông góc với mặt phẳng (P) thì hình chiếu của đoạn thẳng AB trên (P) là một điểm, điểm đó là giao điểm của đường thẳng AB và (P).

Luyện tập 6 trang 86 Toán 11 Tập 2 | Cánh diều Giải Toán 11

⦁ Nếu đoạn thẳng AB không vuông góc với mặt phẳng (P) thì ta cần thực hiện các bước sau đây để xác định hình chiếu của đoạn thẳng AB trên mặt phẳng (P):

Bước 1. Tìm hình chiếu  A’, B’ lần lượt của A và B trên (P).

Bước 2. Nối A’ với B’ ta được đoạn thẳng A’B’ là hình chiếu của đoạn thẳng AB trên mặt phẳng (P).

Luyện tập 6 trang 86 Toán 11 Tập 2 | Cánh diều Giải Toán 11

⦁ Nếu đoạn thẳng AB nằm hoàn toàn trên mặt phẳng (P) thì hình chiếu của đoạn thẳng AB trên mặt phẳng (P) chính là đoạn thẳng AB.

6. Định lý ba đường vuông góc

Giải Toán 11 trang 87 Tập 2

Hoạt động 8 trang 87 Toán 11 Tập 2: Trong Hình 27, mặt sàn gợi nên hình ảnh mặt phẳng (P), đường thẳng a không vuông góc với mặt phẳng (P), đường thẳng a’ là hình chiếu của đường thẳng a trên mặt phẳng (P), đường thẳng d nằm trong mặt phẳng (P). Quan sát Hình 27 và cho biết:

Hoạt động 8 trang 87 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Nếu đường thẳng d vuông góc với hình chiếu a’ thì đường thẳng d có vuông góc với a hay không;

b) Ngược lại, nếu đường thẳng d vuông góc với a thì đường thẳng d có vuông góc với hình chiếu a’ hay không.

Lời giải:

Hoạt động 8 trang 87 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lấy điểm M ∈ a, gọi H là hình chiếu của M trên (P).

Khi đó a’ đi qua H vì a’ là hình chiếu của đường thẳng a trên (P).

Ta có: MH ⊥ (P), d ⊂ (P) nên suy ra MH ⊥ d.

a) Ta có: d ⊥ MH, d ⊥ a’ và MH ∩ a’ = H trong mp(a, a’).

Suy ra d ⊥ mp(a, a’).

Mà a ⊂ mp(a, a’) nên d ⊥ a.

Vậy nếu đường thẳng d vuông góc với hình chiếu a’ thì đường thẳng d vuông góc với a.

b) Ta có: d ⊥ MH, d ⊥ a và MH ∩ a = M trong mp(a, a’).

Suy ra d ⊥ mp(a, a’).

Mà a’ ⊂ mp(a, a’) nên d ⊥ a’.

Vậy nếu đường thẳng d vuông góc với a thì đường thẳng d vuông góc với hình chiếu a’.

Luyện tập 7 trang 87 Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABCD) và đáy ABCD là hình chữ nhật. Chứng minh rằng các tam giác SBC và SCD là các tam giác vuông.

Lời giải:

Luyện tập 7 trang 87 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Ta có: SA ⊥ (ABCD), BC ⊂ (ABCD) và DC ⊂ (ABCD).

Suy ra: SA ⊥ BC và SA ⊥ DC.

Vì ABCD là hình chữ nhật nên BC ⊥ AB và DC ⊥ AD.

· Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB).

Suy ra BC ⊥ (SAB).

Mà SB ⊂ (SAB) nên BC ⊥ SB hay tam giác SBC vuông tại B.

· Ta có: DC ⊥ AD, DC ⊥ SA và AD ∩ SA = A trong (SAD).

Suy ra DC ⊥ (SAD).

Mà SD ⊂ (SAD) nên DC ⊥ SD hay tam giác SCD vuông tại D.

Bài tập

Giải Toán 11 trang 88 Tập 2

Bài 1 trang 88 Toán 11 Tập 2: Quan sát Hình 30 (hai cột của biển báo, mặt đường), cho biết hình đó gợi nên tính chất nào về quan hệ vuông góc giữa đường thẳng và mặt phẳng.

Bài 1 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Quan sát Hình 30 ta thấy a // b, a và b cùng vuông góc với (P). Qua đó, một số các tính chất về quan hệ vuông góc giữa đường thẳng và mặt phẳng được gợi ra như sau:

⦁ Cho hai đường thẳng song song. Một mặt phẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

⦁ Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau.

Bài 2 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABC. Gọi H là hình chiếu của S trên mặt phẳng (ABC).

a) Xác định hình chiếu của các đường thẳng SA, SB, SC trên mặt phẳng (ABC).

b) Giả sử BC ⊥ SA, CA ⊥ SB. Chứng minh rằng H là trực tâm của tam giác ABC và AB ⊥ SC.

Lời giải:

Bài 2 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: H là hình chiếu của S trên mặt phẳng (ABC); A ∈ (ABC).

Suy ra HA là hình chiếu của SA trên mặt phẳng (ABC).

Tương tự ta có HB, HC lần lượt là hình chiếu của SB và SC trên mặt phẳng (ABC).

b) Do H là hình chiếu của S trên mặt phẳng (ABC) nên SH ⊥ (ABC).

Mà AB, AC, BC đều nằm trên (ABC).

Từ đó ta có: SH ⊥ AB, SH ⊥ AC, SH ⊥ BC.

· Ta có: BC ⊥ SH, BC ⊥ SA và SH ∩ SA = S trong (SAH).

Suy ra BC ⊥ (SAH).

Mà AH ⊂ (SAH) nên BC ⊥ AH. (1)

· Ta có: AC ⊥ SB, AC ⊥ SH và SB ∩ SH = S trong (SBH).

Suy ra AC ⊥ (SBH).

Mà BH ⊂ (SBH) nên AC ⊥ BH. (2)

Từ (1) và (2) ta có H là trực tâm của tam giác ABC.

Suy ra AB ⊥ CH.

· Ta có: AB ⊥ CH, AB ⊥ SH và CH ∩ SH = H trong (SCH).

Suy ra AB ⊥ (SCH).

Mà SC ⊂ (SCH) nên AB ⊥ SC.

Bài 3 trang 88 Toán 11 Tập 2: Cho tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của các tam giác BCD, ACD (Hình 31). Chứng minh rằng:

a) CD ⊥ (ABH);

b) CD ⊥ (ABK);

c) Ba đường thẳng AK, BH, CD cùng đi qua một điểm.

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: AB ⊥ (BCD), CD ⊂ (BCD) nên AB ⊥ CD.

Do H là trực tâm của tam giác BCD nên BH ⊥ CD.

Ta có: CD ⊥ AB, CD ⊥ BH và AB ∩ BH = B trong (ABH).

Từ đó ta có: CD ⊥ (ABH).

b) Do K là trực tâm của tam giác ACD nên AK ⊥ CD.

Ta có: CD ⊥ AB, CD ⊥ AK và AB ∩ AK = A trong (ABK).

Từ đó ta có: CD ⊥ (ABK).

c) Theo tính chất “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước” nên có duy nhất một mặt phẳng đi qua điểm A và vuông góc với CD.

Mà CD ⊥ (ABH), CD ⊥ (ABK).

Suy ra (ABH) ≡ (ABK).

Do: H là trực tâm của tam giác BCD nên BH giao với CD tại một điểm I;

       K là trực tâm của tam giác ACD nên AK giao với CD tại một điểm I’.

Mà CD cắt (ABHK) tại một điểm.

Do đó I và I’ trùng nhau hay AK, BH, CD cùng đi qua một điểm.

Bài 4 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình bình hành. Tam giác ABC nhọn có trực tâm H là hình chiếu của S trên (ABCD). Chứng minh rằng:

a) SA ⊥ AD;

b) SC ⊥ CD.

Lời giải:

Bài 4 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có H là trực tâm của tam giác ABC nên AH ⊥ BC.

Hơn nữa BC // AD (do ABCD là hình bình hành).

Suy ra AH ⊥ AD.

Lại có H là hình chiếu của S trên (ABCD) nên HA là hình chiếu của SA trên (ABCD).

Do đó, theo định lí ba đường vuông góc ta có AD ⊥ SA hay SA ⊥ AD.

b) Ta có H là trực tâm của tam giác ABC nên CH ⊥ AB.

Hơn nữa AB // CD (do ABCD là hình bình hành).

Suy ra HC ⊥ CD.

Lại có H là hình chiếu của S trên (ABCD) nên HC là hình chiếu của SC trên (ABCD).

Do đó, theo định lí ba đường vuông góc ta có CD ⊥ SC hay SC ⊥ CD.

Bài 5 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABC), BC ⊥ AB. Lấy hai điểm M, N lần lượt là trung điểm của SB, SC và điểm P nằm trên cạnh SA. Chứng minh rằng tam giác MNP là tam giác vuông.

Lời giải:

Bài 5 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Do SA ⊥ (ABC) hay SA ⊥ (ABCD) nên AB là hình chiếu của SB trên mặt phẳng (ABCD).

Mà BC ⊥ AB nên theo định lí ba đường vuông góc ta có BC ⊥ SB.

Xét ∆SBC có: M, N lần lượt là trung điểm của SB và SC nên MN là đường trung bình của ∆SBC. Do đó MN // BC.

Mà BC ⊥ SB nên SB ⊥ MN.

Do SA ⊥ (ABCD) và BC ⊂ (ABCD) suy ra SA ⊥ BC.

Mà MN // BC nên SA ⊥ MN.

Ta có: MN ⊥ SB, MN ⊥ SA và SB ∩ SA = S trong (SAB).

Suy ra MN ⊥ (SAB).

Hơn nữa PM ⊂ (SAB) nên MN ⊥ PM hay tam giác MNP là tam giác vuông tại M.

Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 1: Hai đường thẳng vuông góc

Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

Bài 5: Khoảng cách

Lý thuyết Đường thẳng vuông góc với mặt phẳng

1. Định nghĩa

Đường thẳng d được gọi là vuông góc với mặt phẳng (P) nếu đường thẳng d vuông góc với mọi đường thẳng a nằm trong mặt phẳng (P), kí hiệu d(P) hoặc (P)d.

Lý thuyết Đường thẳng vuông góc với mặt phẳng (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

2. Điều kiện để đường thẳng vuông góc với mặt phẳng

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.

Nhận xét: Ta có thể chứng minh hai đường thẳng vuông góc bằng cách chứng minh một đường thẳng vuông góc với một mặt phẳng chứa đường thẳng kia.

3. Tính chất

Tính chất 1: Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

- Tính chất 2: Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.

4. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng

- Tính chất 3:

Cho hai đường thẳng song song. Một mặt phẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.

- Tính chất 4:

Cho hai mặt phẳng song song. Một đường thẳng vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng kia.

Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

5. Phép chiếu vuông góc

Cho mặt phẳng (P) và một điểm M tuỳ ý trong không gian. Lấy đường thẳng d đi qua M và vuông góc với (P), gọi giao điểm của d và (P) là M’. Điểm M’ gọi là hình chiếu vuông góc (hay hình chiếu) của điểm M trên (P).

Cho mặt phẳng (P). Quy tắc đặt tương ứng mỗi điểm M trong không gian với hình chiếu vuông góc M’ của điểm đó lên mặt phẳng (P) được gọi là phép chiếu vuông góc lên mặt phẳng (P).

Nhận xét: Vì phép chiếu vuông góc là một trường hợp đặc biệt của phép chiếu song song (khi phương chiếu vuông góc với mặt phẳng chiếu) nên phép chiếu vuông góc có đầy đủ các tính chất của phép chiếu song song.

6. Định lí ba đường vuông góc

Cho đường thẳng a không vuông góc với mặt phẳng (P) và đường thẳng d nằm trong mặt phẳng (P). Khi đó, d vuông góc với a khi và chỉ khi d vuông góc với hình chiếu a’ của a trên (P).

Đánh giá

0

0 đánh giá