Giải SBT Toán 8 trang 20 Tập 1 Cánh diều

210

Với lời giải SBT Toán 8 trang 20 Tập 1 Bài tập cuối chương 1 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài tập cuối chương 1

Bài 35 trang 20 SBT Toán 8 Tập 1: Phân tích mỗi đa thức sau thành nhân tử:

a) 3x2-3x+14;

b) x2 – x – y2 + y;

c) x3 + 2x2 + x – 16xy2.

Lời giải:

a) 3x2-3x+14=3x2-2.3x.12+122=3x-122.

b) x2 – x – y2 + y

= (x2 ‒ y2) ‒ (x ‒ y)

= (x ‒ y)(x + y) ‒ (x ‒ y)

= (x ‒ y)(x + y ‒ 1).

c) x3 + 2x2 + x – 16xy2

= x(x2 + 2x + 1 ‒ 16y2)

= x[(x2 + 2x + 1) ‒ 16y2]

= x[(x + 1)2 ‒ (4y)2]

= x(x + 1 ‒ 4y)(x + 1 + 4y).

Bài 36 trang 20 SBT Toán 8 Tập 1: Một chiếc khăn trải bàn có dạng hình chữ nhật ABCD được thêu một hoạ tiết có dạng hình thoi MNPQ ở giữa với MP = x (cm), NQ = y (cm) (x > y > 0) như Hình 5.

Một chiếc khăn trải bàn có dạng hình chữ nhật ABCD được thêu một hoạ tiết có dạng

Viết đa thức biểu thị diện tích phần còn lại của chiếc khăn trải bàn đó.

Lời giải:

Diện tích của chiếc khăn trải bàn là:

(15 + x + 15)(20 + y + 20)

= (x + 30)(y + 40) = xy + 40x + 30y + 1200 (cm2)

Diện tích của phần hoạ tiết là: 12xy (cm2)

Đa thức biểu thị diện tích phần còn lại của chiếc khăn trải bàn đó là:

xy+40x+30y+1200-12xy=12xy+40x+30y+1200(cm2).

Bài 37* trang 20 SBT Toán 8 Tập 1: Tìm số tự nhiên n để n3 – n2 + n – 1 là số nguyên tố.

Lời giải:

Ta có:n3 – n2 + n – 1

= (n3 ‒ n2) + (n ‒ 1)

= n2(n ‒ 1) + (n ‒ 1)

= (n ‒ 1)(n2 + 1).

Với mọi số tự nhiên n, ta có: n ‒ 1 < n2 + 1.

Do đó, để n3 – n2 + n – 1 là số nguyên tố thì n ‒ 1 = 1 nên .

Khi đó n3 – n2 + n – 1 = 5 là số nguyên tố.

Vậy n = 2 thoả mãn yêu cầu của đề bài.

Đánh giá

0

0 đánh giá