Cho hai đa thức: M = 23x^23y ‒ 22xy^23 +21y ‒ 1và N = ‒22xy^3 ‒ 42y ‒ 1

1.6 K

Với giải Bài 31 trang 19 SBT Toán lớp 8 Cánh diều chi tiết trong Bài tập cuối chương 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán lớp 8 Bài tập cuối chương 1

Bài 31 trang 19 SBT Toán 8 Tập 1: Cho hai đa thức: M = 23x23y ‒ 22xy23 +21y ‒ 1và N = ‒22xy3 ‒ 42y ‒ 1.

a) Tính giá trị của mỗi đa thức M, N tại x = 0; y = –2.

b) Tính M + N; M – N.

c) Tìm đa thức P sao cho M – N – P = 63y + 1.

Lời giải:

a) Thay x = 0; y = –2 vào M ta có:

M = 23. 023.(‒2) ‒ 22.0.2.(‒2)23 +21.(‒2) ‒ 1 = – 42 – 1 = ‒43.

Thay x = 0; y = –2 vào N ta có:

N = ‒22.0.(‒2)3 ‒ 42.(‒2) ‒ 1 = 82 + 1 = 83.

b) Ta có:

M + N = 23x23y ‒ 22xy23 + 21y ‒ 1 + (‒ 22xy3 ‒ 42y ‒ 1)

= 23x23y ‒ 22xy23 ‒ 22xy3 + (21y – 42y) + (‒1 – 1)

= 23x23y ‒ 22xy23 ‒ 22xy3 ‒ 21y ‒ 2.

M + N = 23x23y ‒ 22xy23 +21y ‒ 1 – (‒22xy3 ‒ 42y ‒ 1)

= 23x23y ‒ 22xy23 +21y ‒ 1 + 22xy3 + 42y + 1

= 23x23y ‒ 22xy23 + 22xy3 + 63y.

c) Ta cóM – N – P = 63y + 1

Suy ra P = M – N ‒ (63y + 1)

= 23x23y ‒ 22xy23 + 22xy3 + 63y ‒ 63y ‒ 1

= 23x23y ‒ 22xy23 + 22xy3 ‒ 1

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá