Với lời giải SBT Toán 8 trang 14 Tập 1 chi Bài 4: Phép nhân đa thức sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải SBT Toán 8 Bài 4: Phép nhân đa thức
Bài 1.20 trang 14 sách bài tập Toán 8 Tập 1: Thực hiện phép tính:
a) (x – 2y)(x2z + 2xyz + 4y2z);
b) .
Lời giải:
a) (x – 2y)(x2z + 2xyz + 4y2z)
= x.(x2z + 2xyz + 4y2z) – 2y.(x2z + 2xyz + 4y2z)
= x3z + 2x2yz + 4xy2z ‒ 2x2yz ‒ 4xy2z ‒ 8y3z
= x3z + (2x2yz ‒ 2x2yz) + (4xy2z ‒ 4xy2z) ‒ 8y3z
= x3z ‒ 8y3z.
b)
.
Bài 1.21 trang 14 sách bài tập Toán 8 Tập 1: Tìm tích của hai đa thức:
a) 2x4 – x3y + 6xy3 + 2y4 và x4 + 3x3y – y4;
b) x3y + 0,4x2y2 – xy3 và 5x2 – 2,5xy + 5y2.
Lời giải:
a) (2x4 – x3y + 6xy3 + 2y4)(x4 + 3x3y – y4)
= 2x4.(x4 + 3x3y – y4) – x3y.(x4 + 3x3y – y4) + 6xy3.(x4 + 3x3y – y4) + 2y4.(x4 + 3x3y – y4)
= 2x8 + 6x7y ‒ 2x4y4 ‒ x7y ‒ 3x6y2 + x3y5 + 6x5y3 + 18x4y4 ‒ 6xy7 + 2x4y4 + 6x3y5 ‒ 2y8
= 2x8 + (6x7y ‒ x7y) + (‒2x4y4+18x4y4 + 2x4y4) ‒ 3x6y2 + (x3y5 + 6x3y5) + 6x5y3 ‒ 6xy7‒ 2y8
= 2x8 + 5x7y + 18x4y4 ‒ 3x6y2 + 7x3y5 + 6x5y3 ‒ 6xy7‒ 2y8.
b) (x3y + 0,4x2y2 – xy3)(5x2 – 2,5xy + 5y2)
= x3y.(5x2 – 2,5xy + 5y2) + 0,4x2y2.(5x2 – 2,5xy + 5y2) – xy3.(5x2 – 2,5xy + 5y2)
= 5x5y ‒ 2,5x4y2 + 5x3y3 + 2x4y2 ‒ x3y3 + 2x2y4 ‒ 5x3y3 + 2,5x2y4 ‒ 5xy5
= 5x5y + (‒2,5x4y2 + 2x4y2) + (5x3y3 ‒ x3y3 ‒ 5x3y3) + (2x2y4 + 2,5x2y4) ‒ 5xy5
= 5x5y ‒ 0,5x4y2 ‒ x3y3 + 4,5x2y4 ‒ 5xy5.
P = x4 – (x – y)(x + y)(x2 + y2) – y4.
Lời giải:
P = x4 – (x – y)(x + y)(x2 + y2) – y4
= x4 – [(x – y)(x + y)](x2 + y2)– y4
= x4 – [x(x + y) – y(x + y)](x2 + y2)– y4
= x4 – [x2 + xy – xy – y2](x2 + y2)– y4
= x4 – (x2 ‒ y2)(x2 + y2)– y4
= x4 – (x4+x2y2 – x2y2 – y4)– y4
= x4 ‒ (x4 ‒ y4) – y4
= x4 ‒ x4 + y4 – y4
= (x4 ‒ x4) + (y4 – y4) = 0
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của các biến.
Bài 1.23 trang 14 sách bài tập Toán 8 Tập 1: Rút gọn biểu thức:
a) (x – y)(y + z)(z + x) + (x + y)(y – z)(z + x) + (x + y)(y + z)(z – x);
b) (2x + y)(2y + z)(2z + x) – (2x – y)(2y – z)(2z – x).
Lời giải:
a) Ta có M = A + B + C, trong đó:
A = (x – y)(y + z)(z + x)
= (xy + xz ‒ y2 ‒ yz)(z + x)
= xyz + x2y + xz2 + x2z ‒ y2z ‒ xy2 ‒ yz2 ‒ xyz
= (xyz ‒ xyz) + x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2
= x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2
B = (x + y)(y – z)(z + x)
= (xy ‒ xz + y2 ‒ yz)(z + x)
= xyz + x2y ‒ xz2 – x2z + y2z + xy2 ‒ yz2 ‒ xyz
= (xyz ‒ xyz) + x2y ‒ xz2 – x2z + y2z + xy2 ‒ yz2
= x2y + xy2 ‒ xz2 – x2z + y2z ‒ yz2
C = (x + y)(y + z)(z – x)
= (xy + xz + y2 + yz)(z ‒ x)
= xyz ‒ x2y + xz2 ‒ x2z + y2z ‒ xy2 + yz2 ‒ xyz
= (xyz ‒ xyz) ‒ x2y ‒ xy2 +xz2 ‒ x2z + y2z + yz2
= ‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2.
Khi đó: M = A + B + C
= x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2 + x2y + xy2 ‒ xz2 – x2z + y2z ‒ yz2‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2
= (x2y + x2y ‒ x2y) + (‒xy2 + xy2 ‒ xy2) + (xz2 ‒ xz2 + xz2) + (x2z ‒ x2z ‒ x2z) + (–y2z + y2z + y2z) + (‒yz2 ‒ yz2 + yz2)
= x2y ‒ xy2 + xz2 ‒ x2z + y2z ‒ yz2.
b) Ta có N = P ‒ Q, trong đó:
P = (2x + y)(2y + z)(2z + x)
= (4xy + 2xz + 2y2 + yz)(2z + x)
= 8xyz + 4x2y + 4xz2 + 2x2z + 4y2z + 2xy2 + 2yz2 + xyz
= (8xyz + xyz) + 4x2y + 4xz2 + 2x2z + 4y2z + 2xy2 + 2yz2
= 9xyz + 4x2y + 4y2z + 4xz2 + 2xy2 + 2yz2+ 2x2z.
Q = (2x – y)(2y – z)(2z – x)
= (4xy ‒ 2xz ‒ 2y2 + yz)(2z ‒ x)
= 8xyz ‒ 4x2y ‒ 4xz2+ 2x2z – 4y2z + 2xy2 + 2yz2 ‒ xyz
= (8xyz ‒ xyz) ‒ 4x2y ‒ 4xz2+2x2z – 4y2z + 2xy2 + 2yz2
= 7xyz ‒ 4x2y ‒ 4xz2 ‒ 4y2z + 2xy2 + 2yz2 + 2x2z.
Từ đó: N = P – Q
= 9xyz + 4x2y + 4y2z + 4xz2 + 2xy2 + 2yz2+ 2x2z‒ (7xyz ‒ 4x2y ‒ 4xz2 ‒ 4y2z + 2xy2 + 2yz2 + 2x2z)
= 9xyz + 4x2y + 4xz2 + 4y2z + 2xy2 + 2yz2 + 2x2z ‒ 7xyz + 4x2y + 4xz2 + 4y2z ‒ 2xy2 ‒ 2yz2 ‒ 2x2z
= (9xyz ‒ 7xyz) + (4x2y + 4x2y) + (4y2z + 4y2z) + (4xz2 + 4xz2) + (2xy2 ‒ 2xy2) + (2xy2 ‒ 2yz2) + (2x2z ‒ 2x2z)
= 2xyz + 8x2y + 8y2z + 8xz2..
Xem thêm lời giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Bài 1.18 trang 13 sách bài tập Toán 8 Tập 1: Thực hiện phép nhân:......
Bài 1.19 trang 13 sách bài tập Toán 8 Tập 1: Rút gọn rồi tính giá trị của biểu thức.....
Bài 1.20 trang 14 sách bài tập Toán 8 Tập 1: Thực hiện phép tính:....
Bài 1.21 trang 14 sách bài tập Toán 8 Tập 1: Tìm tích của hai đa thức:.....
Bài 1.23 trang 14 sách bài tập Toán 8 Tập 1: Rút gọn biểu thức:.....
Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Bài 3: Phép cộng và phép trừ đa thức
Bài 5: Phép chia đa thức cho đơn thức
Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu