Sách bài tập Toán 8 Bài 3 (Kết nối tri thức): Phép cộng và phép trừ đa thức

4.2 K

Với giải sách bài tập Toán 8 Bài 3: Phép cộng và phép trừ đa thức sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán lớp 8 Bài 3: Phép cộng và phép trừ đa thức

Giải SBT Toán 8 trang 11

Bài 1.13 trang 11 sách bài tập Toán 8 Tập 1: Tìm tổng P + Q và hiệu P – Q của hai đa thức:

P = 4x2y2 – 3xy3 + 5x3y – xy + 2x – 3;

Q = –4x2y2 – 4xy3 – x3y + xy + y + 1.

Lời giải:

P + Q = 4x2y2 – 3xy3 + 5x3y – xy + 2x – 3–4x2y2 – 4xy3 – x3y + xy + y + 1

= (4x2y2–4x2y2) + (– 3xy3– 4xy3) + (5x3y– x3y) + (– xy + xy) + 2x + y + (–3 + 1)

= ‒7xy3 + 4x3y + 2x + y ‒ 2.

P ‒ Q = 4x2y2 – 3xy3 + 5x3y – xy + 2x – 3 ‒ (–4x2y2 – 4xy3 – x3y + xy + y + 1)

= 4x2y2 – 3xy3 + 5x3y – xy + 2x – 3 + 4x2y2 + 4xy3 + x3y ‒ xy ‒ y ‒ 1

= (4x2y2+4x2y2) + (– 3xy3+ 4xy3) + (5x3y+ x3y) + (– xy ‒ xy) + 2x ‒ y + (–3 ‒ 1)

= 8x2y2 + xy3 + 6x3y ‒ 2xy + 2x ‒ y ‒ 4.

Bài 1.14 trang 11 sách bài tập Toán 8 Tập 1: Cho hai đa thức:

M = 3x2y2 – 0,8xy2 + 2y2 – 1; N = –3x2y2 – 0,2xy2 + 2.

Hãy so sánh bậc của đa thức M và đa thức M + N.

Lời giải:

Ta có:

M + N

= 3x2y2 – 0,8xy2 + 2y2 – 1–3x2y2 – 0,2xy2 + 2

= (3x2y2–3x2y2) + (– 0,8xy2– 0,2xy2) + 2y2 + (–1 + 2)

= ‒xy2 + 2y2 + 1

Đa thức này có bậc 3, nhỏ hơn bậc của đa thức M (bậc 4).

Bài 1.15 trang 11 sách bài tập Toán 8 Tập 1: Tìm đa thức U sao cho:

U – 3x2y + 2xy2 – 5y3 = 2xy2 – xy + 1.

Lời giải:

Ta có:

U – 3x2y + 2xy2 – 5y3 = 2xy2 – xy + 1

Nên U = 2xy2 – xy + 1 + 3x2y ‒ 2xy2 + 5y3

= (2xy2‒ 2xy2) – xy + 3x2y+ 5y3 + 1

= ‒xy + 3x2y+ 5y3 + 1.

Bài 1.16 trang 11 sách bài tập Toán 8 Tập 1: Tìm đa thức V sao cho:

V + 4y3 – 2xy2 + x2y – 9 = 4y3 – 3.

Lời giải:

Do V + 4y3 – 2xy2 + x2y – 9 = 4y3 – 3

Nên V = 4y3 – 3 ‒ 4y3 + 2xy2 – x2y + 9

= (4y3 ‒ 4y3) + 2xy2 ‒ x2y + (‒3 + 9)

= 2xy2 ‒ x2y + 6.

Bài 1.17 trang 11 sách bài tập Toán 8 Tập 1: Cho ba đa thức:

M = 3x3 – 5x2y + 5x – 3y;

N = 4xy – 4x + y;

P = 3x3 + x2y + x + 1.

Tính M + N – P và M – N – P.

Lời giải:

Cách 1:

Ta có:

M + N ‒ P

= (3x3 – 5x2y + 5x – 3y) + (4xy – 4x + y) ‒ (3x3 + x2y + x + 1)

= 3x3 – 5x2y + 5x – 3y + 4xy – 4x + y ‒ 3x3 ‒x2y ‒ x ‒ 1

= (3x3 ‒ 3x3) + (–5x2y‒x2y) + (5x – 4x‒ x) + (– 3y + y) + 4xy ‒ 1

= ‒6x2y + 4xy ‒ 2y ‒1.

M – N – P

= (3x3 – 5x2y + 5x – 3y) ‒ (4xy – 4x + y) ‒ (3x3 + x2y + x + 1)

= 3x3 – 5x2y + 5x – 3y ‒ 4xy + 4x ‒ y ‒ 3x3 ‒x2y ‒ x ‒ 1

= (3x3 ‒ 3x3) + (–5x2y‒x2y) + (5x + 4x‒ x) + (–3y ‒ y) ‒ 4xy ‒ 1

= ‒6x2y + 8x ‒ 4xy ‒ 4y ‒1.

Cách 2:

Ta có:

M – P

= (3x3 – 5x2y + 5x – 3y) ‒ (3x3 + x2y + x + 1)

= 3x3 – 5x2y + 5x – 3y ‒ 3x3 ‒ x2y ‒ x ‒ 1

= (3x3 – 3x3) + (– 5x2y ‒ x2y) + (5x – x) – 3y – 1

= –6x2y + 4x – 3y – 1

Khi đó:

• M + N – P = M – P + N

= –6x2y + 4x – 3y – 1 + 4xy – 4x + y

= –6x2y + (4x – 4x) + (–3y + y) + 4xy – 1

= –6x2y – 2y + 4xy – 1.

• M – N – P = M – P – N

= –6x2y + 4x – 3y – 1 – (4xy – 4x + y)

= –6x2y + 4x – 3y – 1 – 4xy + 4x – y

= –6x2y + (4x + 4x) + (–3y – y) – 4xy – 1

= –6x2y + 8x – 4y – 4xy – 1.

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Bài 2: Đa thức

Bài 3: Phép cộng và phép trừ đa thức

Bài 4: Phép nhân đa thức

Bài 5: Phép chia đa thức cho đơn thức

Bài tập cuối chương 1

Lý thuyết Phép cộng và phép trừ đa thức

Cộng (hay trừ) hai đa thức tức là thu gọn đa thức nhận được sau khi nối hai đa thức đã cho bởi dấu “+” (hay dấu “–”)

Phép cộng đa thức cũng có các tính chất giao hoán và kết hợp tương tự như phép cộng các số.

+ Giao hoán: A + B = B + A

+ Kết hợp: (A + B) + C = A + (B + C)

Ví dụ:

Cho 2 đa thức 

A=x22y+xy+1

          B=x2+yx2y21

Tìm đa thức C = A +B

C=A+BC=(x22y+xy+1)+(x2+yx2y21)C=x22y+xy+1+x2+yx2y21C=(x2+x2)+(2y+y)+xyx2y2+(11)C=2x2y+xyx2y2

Vậy đa thức C=2x2y+xyx2y2

Đánh giá

0

0 đánh giá