Cho tứ diện ABCD có AC = BC, AD = BD. Gọi M là trung điểm của AB

1 K

Với giải Bài 7.20 trang 34 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 25: Hai mặt phẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 25: Hai mặt phẳng vuông góc

Bài 7.20 trang 34 SBT Toán 11 Tập 2: Cho tứ diện ABCD có AC = BC, AD = BD. Gọi M là trung điểm của AB. Chứng minh rằng (CDM) (ABC) và (CDM) (ABD).

Lời giải:

Cho tứ diện ABCD có AC = BC, AD = BD

Xét tam giác ABC có AC = BC nên tam giác ABC cân tại C mà CM là trung tuyến nên CM là đường cao hay CM AB.

Xét tam giác ADB có AD = BD nên tam giác ABD cân tại D mà DM là trung tuyến nên DM là đường cao hay DM AB.

Do đó AB (CDM) mà AB (ABC) nên (CDM) (ABC).

Vì AB (CDM) mà AB (ABD) nên (CDM) (ABD).

Đánh giá

0

0 đánh giá