Với giải Bài 2.16 trang 36 Toán lớp 7 Kết nối tri thức với cuộc sống chi tiết trong Bài 7: Tập hợp các số thực giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 7: Tập hợp các số thực
Bài 2.16 trang 36 Toán lớp 7: Tính:
Phương pháp giải:
Lời giải:
Chú ý:
Nếu thì
Nếu thì
Bài tập vận dụng:
Bài 1. So sánh:
a) 28,03 và 28,0(23)
b) và
c) –2 và
d) –19,11 và –19,(1)
e) và 3
f) và
Hướng dẫn giải
a) Vì 3 > 2 nên 28,03 > 28,02323… nên 28,03 > 28,0(23)
b) Vì nên <
c) Vì 2 > 0 nên . Mà 4 > 3 nên
Do đó . Vậy –2 <
d) Vì 0 < 1 nên 19,110 < 19,111 nên –19,11 > –19,(1)
e) nên
f) (vì ) và (vì 3 > 0). Mà 5 > 3 nên >
Bài 2. Cho tập hợp A = {1,9; –2,(6); 10; ; ; π; ; }. Bằng cách liệt kê các phần tử, hãy viết:
a) Tập hợp B gồm các số hữu tỉ thuộc tập hợp A;
b) Tập hợp C gồm các số vô tỉ thuộc tập hợp A;
c) Tập hợp D gồm các số thực thuộc tập hợp A;
d) Tập hợp A’ gồm các số đối của các số thuộc tập hợp A.
Hướng dẫn giải
a) Ta có:
Vì 1,9; -2,(6); 10; ; là số hữu tỉ nên B = {1,9; –2,(6); 10; ; ; }
b) Vì là số vô tỉ nên C = {π; }
c) Vì các số hữu tỉ và các số vô tỉ đều là số thực nên D = {1,9; –2,(6); 10; ; ; π; ; }
d) Số đối của 1,9 là – 1,9
Số đối của – 2,(6) là 2,(6)
Số đối của 10 là -10
Số đối của là
Số đối của là
Số đối của là –
Số đối của là
Số đối của là
Vậy A’ = {–1,9; 2,(6); –10; –; ; –π; ; }
Bài 3. Tính giá trị tuyệt đối của các số sau:
a)
b)
c)
d)
Hướng dẫn giải
a) Vì < 0 nên
b) Vì > 0 nên
c) Vì < 0 nên
d) Vì > 0 nên
Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 6: Số vô tỉ. Căn bậc hai số học
Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc