Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // QO (M ∈ OP)

772

Với giải Bài 6 trang 45 SBT Toán lớp 8 Chân trời sáng tạo chi tiết trong Bài 2: Đường trung bình của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 2: Đường trung bình của tam giác

Bài 6 trang 45 sách bài tập Toán 8 Tập 2: Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // QO (M ∈ OP), IN // PO (N ∈ QO). Chứng minh:

a) Tam giác IMN cân tại I;

b) OI là đường trưng trực của MN.

Lời giải:

Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // QO (M thuộc OP)

a) Xét ∆OPQ, ta có IP = IQ và IM // QO nên MO = MP.

Xét ∆OPQ, ta có IP = IQ và MO = MP nên IM là đường trung bình của ∆OPQ.

Suy ra IM = 12QO.

Tương tự, IN là đường trung bình của ∆OPQ, suy ra IN = 12PO.

Mà ∆OPQ cân tại O nên QO = PO. Suy ra IM = IN.

Tam giác IMN có IM = IN suy ra tam giác IMN cân tại I.

b) Gọi A là giao điểm của IO và MN.

∆OPQ cân tại O có OI là đường trung tuyến, suy ra OI cũng là đường cao của ∆OPQ.

Suy ra OI ⊥ PQ      (1)

Xét ∆OPQ, ta có MO = MP và NO = NQ nên MN là đường trung bình của ∆OPQ.

Suy ra MN // PQ    (2)

Từ (1) và (2) suy ra MN ⊥ OI tại A hay MN ⊥ IA.

Mà ∆IMN cân tại I có IA là đường cao nên IA cũng là đường trung trực của MN.

Do đó, OI là đường trung trực của MN. 

Đánh giá

0

0 đánh giá