Giải SBT Toán 11 trang 84 Tập 1 Chân trời sáng tạo

468

Với lời giải SBT Toán 11 trang 84 Tập 1 chi tiết trong Bài 2: Giới hạn của hàm số sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Giới hạn của hàm số

Bài 1 trang 84 SBT Toán 11 Tập 1: Sử dụng định nghĩa, tìm các giới hạn sau:

a) limx1(x33x);

b) limx22x+5;

c) limx+4x2x+1.

Lời giải:

a) Giả sử (xn) là dãy số bất kì thỏa mãn xn ≠ –1 với mọi n và limxn = ‒1.

Ta có: lim(x3n3xn)=(limxn)33limxn=(1)33(1)=2.

Vậy limx1(x33x)=2.

b) Giả sử (xn) là dãy số bất kì thỏa mãn xn52, xn ≠ 2 với mọi n và limxn = 2.

Ta có:

lim2xn+5=lim2xn+lim5=2limxn+lim5

=22+5=9=3.

Vậy limx22x+5=3.

c) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = +∞.

Ta có: lim4xn2xn+1 lim4xnlim1lim2+lim1xn = 012+0=12.

Vậy limx+4x2x+1=12.

Bài 2 trang 84 SBT Toán 11 Tập 1: Tìm các giới hạn sau:

a) limx3(8+3xx2);

b) limx2[(5x1)(24x)];

c) limx2x2x(2x+1)2;

d) limx1102x2.

Lời giải:

a)limx3(8+3xx2)=8+3limx3xlimx3x2 

=8+3332=10.

b) limx25x124x=limx25x1limx224x 

=5limx2x124limx2x

= (5.2 ‒ 1)(2 ‒ 4.2) = ‒54.

c) limx2x2x2x+12=limx2x2xlimx24x2+4x+1=limx2x2limx2x4limx2x2+4limx2x+1

=222422+42+1=69=23.

d) limx1102x2=limx1102x2=10limx12x2

=102limx1x2=102.12=8=22.

Bài 3 trang 84 SBT Toán 11 Tập 1: Tìm các giới hạn sau:

a) limx2x24x+2;

b) limx1x311x;

c) limx3x24x+3x3;

d) limx22x+6x+2;

e) limx0xx+11;

g) limx2x24x+4x24.

Lời giải:

a) limx2x24x+2=limx2x+2x2x+2=limx2x2=22=4.

b) limx1x311x=limx1x1x2+x+1x1

=limx1x2+x+1=limx1x2+limx1x+1=3.

c) limx3x24x+3x3=limx3x1x3x3=limx3x1=31=2

d) limx22x+6x+2=limx22x+62+x+6x+22+x+6

=limx24x+6x+22+x+6=limx2x+2x+22+x+6

=limx212+x+6=12+2+6=14.

e) limx0xx+11=limx0xx+1+1x+11x+1+1

=limx0xx+1+1x+11=limx0x+1+1=2.

g) limx2x24x+4x24=limx2x22x+2x2

=limx2x2x+2=limx2x2limx2x+2=04=0.

Bài 4 trang 84 SBT Toán 11 Tập 1: Cho hai hàm số f(x) và g(x) có limx4fx=2limx4gx=3. Tìm các giới hạn:

a) limx4gx3fx;

b) limx42fxgxfx+gx2.

Lời giải:

a) limx4gx3fx=332=9.

b) limx42fxgxfx+gx2=2232+32=121=12.

Bài 5 trang 84 SBT Toán 11 Tập 1: Cho hai hàm số f(x) và g(x) có limx+fx=3limx+fx+2gx=7.

Tìm limx+2fx+gx2fxgx.

Lời giải:

Ta có limx+fx+2gx=7.

limx+fx+2limx+gx=7

3+2limx+gx=7

limx+gx=2

Suy ra limx+2fx+gx2fxgx=2limx+fx+limx+gx2limx+fxlimx+gx=23+2232=2.

Bài 6 trang 84 SBT Toán 11 Tập 1: Cho hàm số fx=3x+4,     x132x2,   x>1.

Tìm các giới hạn limx1+fx,limx1fxlimx1fx.

Lời giải:

Ta có:

limx1+fx=limx1+32x2=limx1+32limx1+x2

=3212=1.

limx1fx=limx13x+4=3limx1x+4=31+4=1.

⦁ Vì limx1+fx=limx1fx=1 nên limx1fx=1.

Bài 7 trang 84 SBT Toán 11 Tập 1: Cho hàm số fx=2x+1,      x1x2+a,  x>1.

Tìm giá trị của tham số a sao cho tồn tại giới hạn limx1fx.

Lời giải:

Ta có: limx1fx=limx12x+1=2limx1x+1=21+1=3;

limx1+fx=limx1+x2+a=limx1+x2+a=1+a;

Để tồn tại limx1fx thì limx1fx=limx1+fx

Tức là 1+a=3, suy ra a = 8.

Đánh giá

0

0 đánh giá