Với lời giải SBT Toán 11 trang 60 Tập 1 chi tiết trong Bài 2: Cấp số cộng sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 2: Cấp số cộng
a) un = 2n + 3;
b) un = ‒3n + 1;
c) un = n2 + 1;
d)
Lời giải:
a) Ta có: u1 = 2.1 + 3 = 5; un = 2n + 3 và un+1 = 2(n + 1) +3 = 2n + 5
Do đó un+1 – un = 2n + 5 – (2n + 3) = 2.
Vậy un = 2n + 3 là cấp số cộng với số hạng đầu u1 = 5 và công sai d = 2.
b) Ta có: u1 = ‒3.1 + 1 = −2; un = ‒3n + 1 và un+1 = ‒3(n + 1) + 1 = ‒3n – 2.
Do đó un+1 – un = ‒3n – 2 – (‒3n + 1) = – 3.
Vậy un = ‒3n + 1 là cấp số cộng với số hạng đầu u1 = −2 và công sai d = ‒3.
c) Xét un = n2 + 1 có:
u1 = 12 + 1 = 2;
u2 = 22 + 1 = 5;
u3 = 32 + 1 = 10
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy un = n2 + 1 không phải là cấp số cộng.
d) Xét có:
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy không phải là cấp số cộng
a) un = 3n + 1;
b) un = 4 ‒ 5n;
c)
d)
e)
g) un = n2 + 1.
Lời giải:
a) Ta có: u1 = 3.1 + 1 = 4; un = 3n + 1; và un+1 = 3(n + 1) + 1 = 3n + 4.
Do đó un+1 – un = 3n + 4 – (3n + 1) = 3.
Vậy un = 3n + 1 là cấp số cộng với số hạng đầu u1 = 4 và công sai d = 3.
b) Ta có: u1 = 4 ‒ 5.1 = ‒1; un = 4 ‒ 5n và un+1 = 4 – 5(n + 1) = −1 – 5n.
Do đó un+1 – un = −1 – 5n – (4 ‒ 5n) = −5.
Vậy un = 4 ‒ 5n là cấp số cộng với số hạng đầu u1 = ‒1 và công sai d = ‒5.
c) Ta có và
Do đó
Vậy là cấp số cộng với số hạng đầu u1 = 1 và công sai
d) Xét có:
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy không phải là cấp số cộng.
e) Xét có:
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy không phải là cấp số cộng.
g) Xét un = n2 + 1 có u1 = 12 + 1 = 2; u2 = 22 + 1 = 5; u3 = 32 + 1 = 10.
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy un = n2 + 1 không phải là cấp số cộng.
Bài 3 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có số hạng tổng quát: un = 7n ‒ 3.
a) Tìm số hạng đầu và công sai của cấp số cộng (un).
b) Tìm u2012.
c) Tính tổng của 100 số hạng đầu tiên của cấp số cộng (un).
d) Số 1 208 là số hạng thứ bao nhiêu của cấp số cộng (un)?
Lời giải:
a) Ta có: u1 = 7.1 ‒ 3 = 4; u2 = 7.2 ‒ 3 = 11.
Vậy cấp số cộng (un) có số hạng đầu u1 = 4 và công sai d = u2 ‒ u1 = 11 ‒ 4 = 7.
b) u2012 = 7.2012 ‒ 3 = 14081.
c) u100 = 7.100 ‒ 3 = 697.
d) Ta có un = 1 208
Do đó 7n ‒ 3 = 1 208
Suy ra n = 173
Vậy số 1 208 là số hạng thứ 173
Bài 4 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un), biết u1 = 5 và d = 3.
a) Tìm số hạng tổng quát của cấp số cộng (un).
b) Tìm u99.
c) Số 1 502 là số hạng thứ bao nhiêu của cấp số cộng (un)?
d) Cho biết Sn = 34 275. Tìm n.
Lời giải:
a) Số hạng tổng quát của cấp số cộng (un) là:
un = u1 + (n ‒ 1)d = 5 + (n ‒ 1).3 = 3n + 2.
b) Ta có u99 = 3.99 + 2 = 299.
c) Ta có: un = 1 502 nên 3n + 2 = 1 502, suy ra n = 500.
Vậy số 1502 là số hạng thứ 500 .
d)
Suy ra n(10 + 3n – 3) = 2 . 34 275
Hay 3n2 + 7n – 68 550 = 0
Suy ra
Mà n ≥ 2 nên n = 150.
Bài 5 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có u18 ‒ u3 = 75. Tìm công sai d.
Lời giải:
Ta có:
u18 = u1 + 17d;
u3 = u1 + 2d.
Do đó:
u18 ‒ u3 = 75
⇔ u1 + 17d ‒ (u1 + 2d) = 75
⇔ 15d = 75
⇔ d = 5.
Vậy cấp số cộng (un) có công sai d = 5.
Xem thêm lời bài sách bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 3 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có số hạng tổng quát: un = 7n ‒ 3....
Bài 4 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un), biết u1 = 5 và d = 3....
Bài 5 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có u18 ‒ u3 = 75. Tìm công sai d....
Bài 6 trang 61 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có u4 + u12 = 90. Tìm S15....
Bài 7 trang 61 SBT Toán 11 Tập 1: Xác định số hạng đầu và công sai của cấp số cộng (un), biết:....
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: