Giải SBT Toán 11 trang 61 Tập 1 Chân trời sáng tạo

234

Với lời giải SBT Toán 11 trang 61 Tập 1 chi tiết trong Bài 2: Cấp số cộng sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Cấp số cộng

Bài 6 trang 61 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có u4 + u12 = 90. Tìm S15.

Lời giải:

Gọi số hạng đầu của cấp số nhân là u1 và công sai là d.

Ta có:

u4 = u1 + 3d;

u12 = u1 + 11d.

Do đó: u4 + u12 = 90

⇔ u1 + 3d + u1 + 11d = 90

⇔ 2u1 + 14d = 90.

Khi đó S15=152u1+151d2=152u1+14d2=15902=675.

Bài 7 trang 61 SBT Toán 11 Tập 1: Xác định số hạng đầu và công sai của cấp số cộng (un), biết:

a) u1+u6=18u3+u7=22;

b) u9u4=15u3u8=184;

c) u6=8u22+u42=16.

Lời giải:

Gọi số hạng đầu của cấp số cộng là u1 và công sai là d.

a) u1+u6=18u3+u7=22u1+u1+5d=18u1+2d+u1+6d=222u1+5d=182u1+8d=22u1=173d=43

Vậy u1=173 và d=43.

b) u9u4=15u3u8=184u1+8du1+3d=15u1+2du1+7d=1845d=15u1+2du1+7d=184

d=3u1+2du1+7d=184

Với d = 3 ta có: (u1 + 2.3)(u1 + 7.3) = 184

u12+27u158=0

u1=2u1=29

Vậy d=3u1=2 hoặc d=3u1=29

c) u6=8u22+u42=16u1+5d=8u1+d2+u1+3d2=16   *

Từ u1 + 5d = 8 suy ra u1 = 8 ‒ 5d, thay vào biểu thức (*) ta có:

(8 ‒ 5d + d)2 + (8 ‒ 5d + 3d)2 = 16

⇔ (8 ‒ 4d)2 + (8 ‒ 2d)2 = 16

⇔ (64 – 64d + 16d2) + (64 – 32d + 4d2) = 16

⇔ 20d2 – 96d + 112 = 0

d=2d=145

Với d = 2 thì u1 = 8 ‒ 5.2 = ‒2

Với d=145 thì u1=85145=6

Vậy u1=2d=2 hoặc u1=6d=145.

Bài 8 trang 61 SBT Toán 11 Tập 1: Bác Tư vào làm cho một công ty với hợp đồng về tiền lương mỗi năm như sau:

⦁ Năm thứ nhất: 240 triệu;

⦁ Từ năm thứ hai trở đi: Mỗi năm tăng thêm 12 triệu.

Tính số tiền lương một năm của bác Tư vào năm thứ 11 .

Lời giải:

Gọi un là số tiền lương của bác Tư nhận được vào năm thứ n.

Khi đó, dãy số (un) tạo thành cấp số cộng có u1 = 240 và d = 12.

Ta có u11 = u1 + 10d = 240 + 10.12 = 360.

Vậy vào năm thứ 11, số tiền lương một năm của bác Tư là 360 triệu đồng.

Bài 9 trang 61 SBT Toán 11 Tập 1: Một rạp hát có 20 hàng ghế. Hàng thứ nhất có 20 ghế, số ghế ở các hàng sau đều hơn số ghế hàng ngay trước đó một ghế. Cho biết rạp hát đã bán hết vé với giá mỗi vé là 60 nghìn đồng. Tính tổng số tiền vé thu được của rạp hát.

Lời giải:

Gọi un là số ghế ở hàng thứ n.

Khi đó, dãy số (un) tạo thành cấp số cộng với u1 = 20 và d = 1.

Tổng số ghế có trong rạp hát là: S20=20220+20112=590 (ghế).

Tổng số tiền vé thu được là: 590 . 60 000 = 35 400 000 (đồng).

Đánh giá

0

0 đánh giá