Giải SGK Toán 10 Bài 4 (Chân trời sáng tạo): Các số đặc trưng mức độ phân tán của mẫu số liệu

4.7 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu chi tiết sách Toán 10 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Giải toán lớp 10 trang 120 Tập 1 Chân trời sáng tạo

HĐ Khởi động trang 120 Toán lớp 10: Nhiệt độ không khí trung bình các tháng trong năm 2019 tại Lai Châu và Lâm Đồng (đơn vị: độ C)

Nhiệt độ không khí trung bình các tháng trong năm 2019 tại Lai Châu và Lâm Đồng

Theo bạn, địa phương nào có thời tiết ôn hòa hơn?

Lời giải:

Nếu so sánh nhiệt độ trung bình thì 2 địa phương đều có thời tiết ôn hòa dễ chịu. Tuy nhiên so sánh sự chên lệch nhiệt độ giữa các tháng thì Lâm Đồng có thời tiết ôn hòa hơn do tháng thấp nhất là khoảng 15 độ (cao hơn Lai Châu) và sự chênh lệch nhiệt độ giữa các tháng không lớn (khoảng 4 độ C).

1. Khoảng biến thiên và khoảng tứ phân vị

HĐ Khám phá 1 trang 120 Toán lớp 10: Thời gian hoàn thành bài chạy 5 km (tính theo phút) của hai nhóm thanh niên được cho ở bảng sau:

Thời gian hoàn thành bài chạy 5 km (tính theo phút) của hai nhóm thanh niên

a) Hãy tính độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong từng nhóm.

b) Nhóm nào có thành tích chạy đồng đều hơn?

Lời giải:

a) Độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong nhóm 1 là:

4717=30 (phút)

Độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong nhóm 2 là:

3229=3(phút)

b) Dễ thấy: nhóm 2 có thành tích chạy đồng đều hơn.

Giải toán lớp 10 trang 121 Tập 1 Chân trời sáng tạo

Thực hành 1 trang 121 Toán lớp 10: Hãy tìm khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:

a) 10; 13; 15; 2; 10; 19; 2; 5; 7.

b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15.

Phương pháp giải:

Cho mẫu số liệu: x1,x2,...,xn

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

+) Khoảng biến thiên: R=XnX1

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

Khoảng tứ phân vị: ΔQ=Q3Q1

Lời giải:

a) Xét mẫu số liệu đã sắp xếp là: 2;2;5;7;10;10;13;15;19

Khoảng biến thiên của mẫu số liệu là: R=192=17.

Cỡ mẫu là n=9 là số lẻ nên giá trị tứ phân vị thứ hai là: Q2=10.

Tứ phân vị thứ nhất là trung vị của mẫu: 2;2;5;7. Do đó Q1=3,5

Tứ phân vị thứ ba là trung vị của mẫu: 10;13;15;19. Do đó Q3=14

Khoảng tứ phân vị của mẫu là: ΔQ=143,5=10,5

b) Xét mẫu số liệu đã sắp xếp là: 1;2;5;5;9;10;10;15;15;19

Khoảng biến thiên của mẫu số liệu là: R=191=18.

Cỡ mẫu là n=10 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=9,5.

Tứ phân vị thứ nhất là trung vị của mẫu: 1;2;5;5;9. Do đó Q1=5.

Tứ phân vị thứ ba là trung vị của mẫu: 10;10;15;15;19. Do đó Q3=15

Khoảng tứ phân vị của mẫu là: ΔQ=155=10

Vận dụng 1 trang 121 Toán lớp 10: Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).

Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.

b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.

Phương pháp giải:

a) Cho mẫu số liệu: x1,x2,...,xn

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

+) Khoảng biến thiên: R=XnX1

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

Khoảng tứ phân vị: ΔQ=Q3Q1

b) So sánh khoảng biến thiên

Lời giải:

a)

+) Tỉnh Lai Châu: Xét mẫu số liệu đã sắp xếp là:

14,214,818,618,820,321,022,723,523,624,224,624,7

 Khoảng biến thiên của mẫu số liệu là: R=24,714,2=10,5.

Cỡ mẫu là n=12 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=21,85.

Tứ phân vị thứ nhất là trung vị của mẫu: 14,214,818,618,820,321,0. Do đó Q1=18,7.

Tứ phân vị thứ ba là trung vị của mẫu: 22,723,523,624,224,624,7. Do đó Q3=23,9

Khoảng tứ phân vị của mẫu là: ΔQ=23,918,7=5,2

+) Tỉnh Lâm Đổng: Xét mẫu số liệu đã sắp xếp là:

16,016,317,417,518,518,618,719,319,519,820,220,3

Khoảng biến thiên của mẫu số liệu là: R=20,316,0=4,3.

Cỡ mẫu là n=12 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=18,65.

Tứ phân vị thứ nhất là trung vị của mẫu: 16,016,317,417,518,518,6. Do đó Q1=17,45.

Tứ phân vị thứ ba là trung vị của mẫu: 18,719,319,519,820,220,3. Do đó Q3=19,65

Khoảng tứ phân vị của mẫu là: ΔQ=19,6517,45=2,2

Giải toán lớp 10 trang 122 Tập 1 Chân trời sáng tạo

Thực hành 2 trang 122 Toán lớp 10: Hãy tìm giá trị ngoại lệ của mẫu số liệu: 37; 12; 3; 9; 10; 9; 12; 3; 10.

Phương pháp giải:

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

Khoảng tứ phân vị: ΔQ=Q3Q1

Bước 3: Tìm x trong mẫu sao cho x>Q3+1,5ΔQ hoặc x<Q11,5ΔQ

Lời giải:

Xét mẫu số liệu đã sắp xếp là:

3;3;9;9;10;10;12;12;37.

Cỡ mẫu là n=9 là số lẻ nên giá trị tứ phân vị thứ hai là: Q2=10.

Tứ phân vị thứ nhất là trung vị của mẫu: 3;3;9;9.. Do đó Q1=6.

Tứ phân vị thứ ba là trung vị của mẫu: 10;12;12;37.. Do đó Q3=12

Khoảng tứ phân vị của mẫu là: ΔQ=126=6

Giá trị ngoại lệ x thỏa mãn x>12+1,5.6=21 hoặc x<61,5.6=3.

Vậy giá trị ngoại lệ của mẫu số liệu đó là 37

2. Phương sai và độ lệch chuẩn

HĐ Khám phá 2 trang 122 Toán lớp 10: Hai cung thủ A và B đã ghi lại kết quả từng lần bắn của mình ở bảng sau:

Cung thủ A

8

9

10

7

6

10

6

7

9

8

Cung thủ B

10

6

8

7

9

9

8

7

8

8

a) Tính kết quả trung bình của mỗi cung thủ trên

b) Cung thủ nào có kết quả các lần bắn ổn định hơn?

Lời giải:

a) Kết quả trung bình của Cung thủ A là:

8+9+10+7+6+10+6+7+9+810=8

Kết quả trung bình của Cung thủ A là:

10+6+8+7+9+9+8+7+8+810=8

b)

+) Khoảng biến thiên số điểm của cung thủ A là: R=106=4

Xét mẫu số liệu đã sắp xếp là:

667788991010

Cỡ mẫu là n=10 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=8.

Tứ phân vị thứ nhất là trung vị của mẫu:6,6,7,7,8. Do đó Q1=7.

Tứ phân vị thứ ba là trung vị của mẫu: 8,9,9,10,10. Do đó Q3=9

Khoảng tứ phân vị của mẫu là: ΔQ=97=2

+) Khoảng biến thiên số điểm của cung thủ A là: R=106=4

Xét mẫu số liệu đã sắp xếp là:

67788889910

Cỡ mẫu là n=10 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=8.

Tứ phân vị thứ nhất là trung vị của mẫu:6,6,7,7,8. Do đó Q1=7.

Tứ phân vị thứ ba là trung vị của mẫu: 8,9,9,10,10. Do đó Q3=9

Khoảng tứ phân vị của mẫu là: ΔQ=97=2

=> Nếu so sánh khoảng chênh lệch và khoảng tứ phân vị thì không xác định được kết quả của cung thủ nào ổn định hơn.

Giải toán lớp 10 trang 124 Tập 1 Chân trời sáng tạo

Vận dụng 2 trang 124 Toán lớp 10: Bảng dưới đây thống kê tổng số giờ nắng trong năm 2019 theo từng tháng được đo bởi hai trạm quan sát khí tượng đặt ở Tuyên Quang và Cà Mau.

Tháng

1

2

3

4

5

6

7

8

9

10

11

12

Tuyên Quang

25

89

72

117

106

177

156

203

227

146

117

145

Cà Mau

180

223

257

245

191

111

141

134

130

122

157

173

a) Hãy tính phương sai và độ lệch chuẩn của dữ liệu từng tỉnh.

b) Nêu nhận xét về sự thay đổi tổng số giờ nắng theo từng tháng ở mỗi tỉnh.

Phương pháp giải:

Cho mẫu số liệu x1,x2,...,xn.

Bước 1. Tính số trung bình x¯=x1+x2+...+xnn

Bước 2: +) Tính phương sai S2=1n[(x1x¯)2+(x2x¯)2+...+(xnx¯)2] hoặc S2=1n(x12+x22+...+xn2)x¯2

              +) Độ lệch chuẩn S=S2

Lời giải:

+) Tuyên Quang:

Số giờ nắng trung bình x¯=25+89+72+117+106+177+156+203+227+146+117+14512=131,67

Phương sai: S2=112(252+892+...+1452)131,6722921,2

Độ lệch chuẩn S=2921,254

+) Cà Mau:

Số giờ nắng trung bình x¯=180+223+257+245+191+111+141+134+130+122+157+17312=172

Phương sai: S2=112[(1802+2232+...+1732)1722]=2183

Độ lệch chuẩn S=2183=46,7

=> Nhận xét: Ở Tuyên Quang tổng số giờ nắng theo từng tháng thay đổi nhiều hơn so với ở Cà Mau.

Bài tập

Bài 1 trang 124 Toán lớp 10: Hãy chọn ngẫu nhiên trong lớp ra 5 bạn nam và 5 bạn nữ rồi đo chiều cao các bạn đó. So sánh xem chiều cao của các bạn nam hay các bạn nữ đồng đều hơn.

Phương pháp giải:

Từ mẫu số liệu so sánh hai giá trị: Khoảng biến thiên hoặc khoảng tứ phân vị.

+ Nếu trong mẫu không có số liệu nào quá lớn hay quá nhỏ => so sánh khoảng biến thiên

+ Nếu trong mẫu có 1 số liệu quá lớn hoặc quá nhỏ => so sánh khoảng tứ phân vị.

Lời giải:

Chiều cao 5 HS nam

170

164

172

168

176

Chiều cao 5 HS nữ

155

152

157

162

160

+) Khoảng biến thiên chiều cao của các học sinh nam là: 176 - 164 =12

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: 164,168,170,172,176

Bước 2: n=5, là số lẻ nên Q2=Me=170

Q1 là trung vị của nửa số liệu 164,168. Do đó Q1=12(164+168)=166

Q3 là trung vị của nửa số liệu 172,176. Do đó Q3=12(172+176)=174

Khoảng tứ phân vị ΔQ=174166=8

+) Khoảng biến thiên chiều cao của các học sinh nữ là: 162152=10

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: 152,155,157,160,162

Bước 2: n=5, là số lẻ nên Q2=Me=157

Q1 là trung vị của nửa số liệu 152,155. Do đó Q1=12(152+155)=153,5

Q3 là trung vị của nửa số liệu 160,162. Do đó Q3=12(160+162)=161

Khoảng tứ phân vị ΔQ=161153,5=7,5

Kết luận: So sánh khoảng biến thiên hay tứ phân vị thì theo mẫu số liệu trên, chiều cao của 5 bạn nữ là đồng đều hơn.

Bài 2 trang 124 Toán lớp 10: Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và các giá trị ngoại lệ của các mẫu số liệu sau:

a) 6; 8; 3; 4; 5; 6; 7; 2; 4.

b) 13; 37; 64; 12; 26; 43; 29; 23.

Phương pháp giải:

Cho mẫu số liệu x1,x2,...,xn.

+) số trung bình x¯=x1+x2+...+xnn

+) phương sai S2=1n[(x1x¯)2+(x2x¯)2+...+(xnx¯)2] hoặc S2=1n(x12+x22+...+xn2)x¯2

  => Độ lệch chuẩn S=S2

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

+) Khoảng biến thiên: R=XnX1

Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

+) Khoảng tứ phân vị: ΔQ=Q3Q1

+) x là giá trị ngoại lệ trong mẫu nếu x>Q3+1,5ΔQ hoặc x<Q11,5ΔQ

Lời giải:

a) Số trung bình: x¯=6+8+3+4+5+6+7+2+49=5.

Phương sai mẫu số liệu là:

S2=19(62 + 82 + 32 + 42 + 52 + 62 + 72 + 22 + 42) – 52 = .

Độ lệch chuẩn mẫu số liệu là: S=S2=103=303.

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

2; 3; 4; 4; 5; 6; 6; 7; 8.

Khoảng biến thiên của mẫu là: R = 8 – 2 = 6.

Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2 = 5.

Tứ phân vị thứ nhất là trung vị của mẫu: 2; 3; 4; 4. Do đó Q1 = 3,5.

Tứ phân vị thứ ba là trung vị của mẫu: 6; 6; 7; 8. Do đó Q3 = 6,5.

Khoảng tứ phân vị của mẫu là: ∆Q = 6,5 – 3,5 = 3.

Ta có: Q3 + 1,5∆Q = 6,5 + 1,5 . 3 = 11 và Q1 – 1,5∆Q = 3,5 – 1,5 . 3 = – 1.

Do đó mẫu số liệu không có giá trị ngoại lệ.

b)

Số trung bình: x¯=13+37+64+12+26+43+29+238=30,875.

Phương sai mẫu số liệu là: S=S2=255,8616

S2=18(132 + 372 + 642 + 122 + 262 + 432 + 292 + 232) – (30,875)2 ≈ 255,86.

Độ lệch chuẩn mẫu số liệu là: .

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

12; 13; 23; 26; 29; 37; 43; 64.

Khoảng biến thiên của mẫu là: R = 64 – 12 = 52.

Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2 = 1226+29=27,5.

Tứ phân vị thứ nhất là trung vị của mẫu: 12; 13; 23; 26. Do đó Q1 = 18.

Tứ phân vị thứ ba là trung vị của mẫu: 29; 37; 43; 64. Do đó Q3 = 40.

Khoảng tứ phân vị của mẫu là: ∆Q = 40 – 18 = 22.

Ta có: Q3 + 1,5∆Q = 40 + 1,5 . 22 = 73 và Q1 – 1,5∆Q = 18 – 1,5 . 22 = – 15.

Do đó mẫu số liệu không có giá trị ngoại lệ.

Giải toán lớp 10 trang 125 Tập 1 Chân trời sáng tạo

Bài 3 trang 125 Toán lớp 10: Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:

a)

Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu

b)

Giá trị

0

1

2

3

4

Tần suất

0,1

0,2

0,4

0,2

0,1

Phương pháp giải:

Cho bảng số liệu:

Giá trị

x1

x2

xm

Tần số

f1

f2

fm

+) Số trung bình: x¯=x1.f1+x2.f2+...+xm.fmf1+f2+...+fm

+) Phương sai S2=1n(f1.x12+f2..x22+...+fn..xn2)x¯2

  => Độ lệch chuẩn S=S2

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

+) Khoảng biến thiên: R=XnX1

Tứ phân vị: Q1,Q2,Q3

+) Khoảng tứ phân vị: ΔQ=Q3Q1

Lời giải:

a) +) Số trung bình x¯=2.10+(1).10+0.30+1.20+2.1010+20+30+20+10=0

+) phương sai hoặc S2=19(10.(2)2+10.(1)2+...+10.22)0213,33

  => Độ lệch chuẩn S3,65

+) Khoảng biến thiên: R=2(2)=4

Tứ phân vị: Q2=0;Q1=1;Q3=1

+) Khoảng tứ phân vị: ΔQ=1(1)=2

b) Giả sử cỡ mẫu n=10. Khi đó mẫu số liệu trở thành:

Giá trị

0

1

2

3

4

Tần số

1

2

4

2

1

+) Số trung bình x¯=0.0,1+1.0,2+2.0,4+3.0,2+4.0,10,1+0,2+0,4+0,2+0,1=2

+) phương sai hoặc S2=11(0,1.02+0,2.12+...+0,1.42)22=1,2

  => Độ lệch chuẩn S1,1

+) Khoảng biến thiên: R=40=4

Tứ phân vị: Q2=2;Q1=1;Q3=3

+) Khoảng tứ phân vị: ΔQ=31=2

Bài 4 trang 125 Toán lớp 10: Hãy so sánh số trung bình, phương sai và độ lệch chuẩn của ba mẫu số liệu sau:

Mẫu 1:         0,1;    0,3;   0,5;    0,5;    0,3;    0,7.

Mẫu 2:         1,1;    1,3;    1,5;    1,5;    1,3;    1,7.

Mẫu 3:         1;       3;       5;       5;       3;       7.

Phương pháp giải:

+) số trung bình x¯=x1+x2+...+xnn

+) Phương sai S2=1n[(x1x¯)2+(x2x¯)2+...+(xnx¯)2] hoặc S2=1n(x12+x22+...+xn2)x¯2

+) Độ lệch chuẩn S=S2

Lời giải:

Mẫu 1:

+) Số trung bình: x¯=0,1+0,3+0,5+0,5+0,3+0,76=0,4

+) Phương saiS2=16(0,12+0,32+0,52+0,52+0,32+0,72)0,420,0367

+) Độ lệch chuẩn S=S20,19

Mẫu 2:

+) Số trung bình: x¯=1,1+1,3+1,5+1,5+1,3+1,76=1,4

+) Phương saiS2=16(1,12+1,32+1,52+1,52+1,32+1,72)1,420,0367

+) Độ lệch chuẩn S=S20,19

Mẫu 3:

+) Số trung bình: x¯=1+3+5+5+3+76=4

+) Phương sai S2=16(12+32+52+52+32+72)423,67

+) Độ lệch chuẩn S=S21,9

Kết luận:

Số liệu ở mẫu 2 hơn số liệu ở mẫu 1 là 1 đơn vị, số trung bình của mẫu 2 hơn số trung bình mẫu 1 là 1 đơn vị, còn phương sai và độ lệch chuẩn là như nhau.

Số liệu ở mẫu 3 gấp 10 lần số liệu mẫu 1, số trung bình, phương sai và độ lệch chuẩn của mẫu 3 lần lượt gấp 10 lần, 100 lần và 10 lần mẫu 1.

Bài 5 trang 125 Toán lớp 10: Sản lượng lúa các năm từ 2014 đến 2018 của hai tỉnh Thái Bình và Hậu Giang được cho ở bảng sau (đơn vị: nghìn tấn).

Sản lượng lúa các năm từ 2014 đến 2018 của hai tỉnh Thái Bình và Hậu Giang

a) Hãy tính độ lệch chuẩn và khoảng biến thiên của sản lượng lúa từng tỉnh.

b) Tỉnh nào có sản lượng lúa ổn định hơn? Tại sao?

Phương pháp giải:

a)

+) Tình độ lệch chuẩn:

Bước 1:  Tìm số trung bình x¯=x1+x2+...+xnn

Bước 2: Tính phương sai S2=1n[(x1x¯)2+(x2x¯)2+...+(xnx¯)2] hoặc S2=1n(x12+x22+...+xn2)x¯2

=> Độ lệch chuẩn S=S2

+) Khoảng biến thiên = số liệu lớn nhất – số liệu nhỏ nhất

b)

So sánh khoảng biến thiên và độ lệch chuẩn, tỉnh nào có khoảng biến thiên và độ lệch chuẩn nhỏ hơn thì có sản lượng lúa ổn định hơn.

Lời giải:

a)

Tỉnh Thái Bình:

Số trung bình x¯=1061,9+1061,9+1053,6+942,6+1030,45=1030,08

Phương saiS2=15(1061,92+1061,92+1053,62+942,62+1030,42)1030,082=2046,2

=> Độ lệch chuẩn S=S245,2

+) Khoảng biến thiên R=1061,9942,6=119,3

Tỉnh Hậu Giang:

Số trung bình x¯=1204,6+1293,1+1231,0+1261,0+1246,15=1247,16

Phương saiS2=16(1204,62+1293,12+1231,02+1261,02+1246,12)1247,162=875,13

=> Độ lệch chuẩn S=S229,6

+) Khoảng biến thiên R=1293,11204,6=88,5

b)

So sánh khoảng biến thiên và độ lệch chuẩn ta đều thấy tỉnh Hậu Giang có sản lượng lúa ổn định hơn.

Bài 6 trang 125 Toán lớp 10: Kết quả điều tra mức lương hằng tháng của một số công nhân của hai nhà máy A và B được cho ở bảng sau (đơn vị: triệu đồng):

Kết quả điều tra mức lương hằng tháng của một số công nhân của hai nhà máy

a) Hãy tìm số trung bình, mốt, tứ phân vị và độ lệch chuẩn của hai mẫu số liệu lấy từ nhà máy A và nhà máy B.

b) Hãy tìm các giá trị ngoại lệ trong mỗi mẫu số liệu trên. Công nhân nhà máy nào có mức lương cao hơn? Tại sao?

Phương pháp giải:

a)

+) Số trung bình: x¯=x1+x2+...+xnn

+) Mốt: là giá trị xuất hiện nhiều nhất trong mẫu số liệu.

+) Tứ phân vị: Q1,Q2,Q3

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

+) Độ lệch chuẩn S=S2

Tính phương sai S2=1n(x12+x22+...+xn2)x¯2

b)

+) x là giá trị ngoại lệ nếu x>Q3+1,5.ΔQ hoặc x<Q11,5.ΔQ

+) So sánh trung vị (do một mẫu có số liệu quá lớn so với các số liệu khác): nhà máy nào có trung vị lớn hơn thì có mức lương cao hơn.

Lời giải:

a)

* Nhà máy A:

+ Số trung bình mức lương hàng tháng: xA¯=4+5+5+47+5+6+4+48=10.

+ Giá trị 4 và 5 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy A là 4 và 5.

+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:

4; 4; 4; 5; 5; 5; 6; 47.

Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2A = 5.

Tứ phân vị thứ nhất là trung vị của mẫu: 4; 4; 4; 5. Do đó Q1A = 4.

Tứ phân vị thứ ba là trung vị của mẫu: 5; 5; 6; 47. Do đó Q3A = 5,5.

+ Phương sai mẫu:

(42 + 52 + 52 + 472 + 52 + 62 + 42 + 42) – 102 = 196.

+ Độ lệch chuẩn: SA = .

* Nhà máy B:

+ Số trung bình mức lương hàng tháng: .

+ Giá trị 9 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy B là 9.

+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:

2; 8; 9; 9; 9; 9; 9; 10; 11.

Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2B = 9.

Tứ phân vị thứ nhất là trung vị của mẫu: 2; 8; 9; 9. Do đó Q1B = 8,5.

Tứ phân vị thứ ba là trung vị của mẫu: 9; 9; 10; 11. Do đó Q3B = 9,5.

+ Phương sai mẫu:

SB2=19(22 + 82 + 92 + 92 + 92 + 92 + 92 + 102 + 112) – 8,42 = 6,55.

+ Độ lệch chuẩn: SB = SB2=6,552,6.

b)

+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy A là: ∆QA = 5,5 – 4 = 1,5.

Ta có: Q3A + 1,5∆QA = 5,5 + 1,5 . 1,5 = 7,75 và Q1A – 1,5∆QA = 4 – 1,5 . 1,5 = 1,75.

Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy A là 47.

Lý thuyết Các số đặc trưng đo mức độ phân tán của mẫu số liệu

1. Khoảng biến thiên và khoảng tứ phân vị

1.1. Khoảng biến thiên và khoảng tứ phân vị

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

x≤ x2 ≤ … ≤ xn.

• Khoảng biến thiên của một mẫu số liệu, kí hiệu là R, là hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đó, tức là:

R = xn – x1.

• Khoảng tứ phân vị, kí hiệu là ∆Q, là hiệu giữa Q3­ và Q1, tức là:

Q = Q3 – Q1.

Ví dụ: Hãy tính khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu:

10; 3; 5; 7; 20; 1; 4; 9.

Hướng dẫn giải

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được: 1; 3; 4; 5; 7; 9; 10; 20.

- Khoảng biến thiên của mẫu số liệu là R = 20 – 1 = 19.

- Cỡ mẫu là n = 8, là số chẵn nên giá trị tứ phân vị thứ hai là Q2 = 6.

- Tứ phân vị thứ nhất là trung vị của mẫu: 10; 3; 5; 7. Do đó Q1 = 4.

- Tứ phân vị thứ 3 là trung vị của mẫu: 7; 9; 10; 20. Do đó Q3 = 9,5.

- Khoảng tứ phân vị của mẫu là: ∆Q = 9,5 – 4 = 5,5.

1.2. Ý nghĩa của khoảng biến thiên và khoảng tứ phân vị

Khoảng biến thiên đặc trưng cho độ phân tán của toàn bộ mẫu số liệu.

Khoảng tứ phân vị đặc trưng cho độ phân tán của một nửa các số liệu, có giá trị thuộc đoạn từ Q1 đến Q3 trong mẫu.

Khoảng tứ phân vị không bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu.

Ví dụ: Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.

b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.

Hướng dẫn giải

a)

* Tỉnh Lai Châu:

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

14,2; 14,8; 18,6; 18,8; 20,3; 21,0; 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.

+ Khoảng biến thiên của mẫu số liệu là: R = 24,7 – 14,2 = 10,5.

+ Cỡ mẫu là n = 12 là số chẵn nên giá trị tứ phân vị thứ hai là:

Q1221,0+22,7=21,85 .

+ Tứ phân vị thứ nhất là trung vị của mẫu: 14,2; 14,8; 18,6; 18,8; 20,3; 21,0.

Do đó Q1 = 1218,6+18,8=18,7 .

+ Tứ phân vị thứ ba là trung vị của mẫu: 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.

Do đó Q3 = 1223,6+24,2=23,9 .

+ Khoảng tứ phân vị của mẫu là: ∆Q = 23,9 – 18,7 = 5,2.

* Tỉnh Lâm Đồng:

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

16,0; 16,3; 17,4; 17,5; 18,5; 18,6; 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.

+ Khoảng biến thiên của mẫu số liệu là: R= 20,3 – 16,0 = 4,3.

+ Cỡ mẫu là n = 12 là số chẵn nên giá trị tứ phân vị thứ hai là:

Q'1218,6+18,7=18,65 .

+ Tứ phân vị thứ nhất là trung vị của mẫu: 16,0; 16,3; 17,4; 17,5; 18,5; 18,6.

Do đó Q'1 = 1217,4+17,5=17,45 .

+ Tứ phân vị thứ ba là trung vị của mẫu: 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.

Do đó Q'3 = 1219,5+19,8=19,65 .

+ Khoảng tứ phân vị của mẫu là: ∆'Q = 19,65 – 17,45 = 2,2.

b) Xét về cả khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của cả hai tỉnh, ta thấy: 10,5 > 4,3 hay R > R' và 5,2 > 2,2 hay ∆Q > ∆'Q.

Điều đó có nghĩa là trong một năm, nhiệt độ ở Lâm Đồng ít thay đổi hơn.

1.3. Giá trị ngoại lệ  

Khoảng tứ phân vị được dùng để xác định các giá trị ngoại lệ trong mẫu, đó là các giá trị quá nhỏ hay quá lớn so với đa số các giá trị của mẫu. Cụ thể, phần tử x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5∆Q hoặc x < Q1 – 1,5∆Q.

Sự xuất hiện của các giá trị ngoại lệ làm cho số trung bình và phạm vi của mẫu thay đổi lớn. Do đó, khi mẫu có giá trị ngoại lệ, người ta thường sử dụng trung vị và khoảng tứ phân vị để đo mức độ tập trung và mức độ phân tán của đa số các phần tử trong mẫu số liệu.

Ví dụ: Trong ví dụ ở phần 1.1, ta có:

Q1 – 1,5∆Q = 4 – 1,5 . 5,5 = – 4,25

Q3 + 1,5∆Q = 9,5 + 1,5 . 5,5 = 17,75

Do đó, mẫu có một giá trị ngoại lệ là 20.

2. Phương sai và độ lệch chuẩn

2.1. Công thức tính phương sai và độ lệch chuẩn

* Giả sử ta có một mẫu số liệu là x1, x2, …, xn.

 Phương sai của mẫu số liệu này, kí hiệu là S2, được tính bởi công thức:S2=1nx1x¯2+x2x¯2+...+xnx¯2,

 

trong đó x¯ là số trung bình của mẫu số liệu.

 Căn bậc hai của phương sai được gọi là độ lệch chuẩn, kí hiệu là S.

Chú ý: Có thể biến đổi công thức tính phương sai ở trên thành:

S2=1nx12+x22+...+xn2x¯2.

Trong thống kê, người ta cũng quan tâm đến phương sai hiệu chỉnh, kí hiệu là , được tính bởi công thức:

s^2=1n1x1x¯2+x2x¯2+...+xnx¯2.

* Giả sử mẫu số liệu được cho dưới dạng bảng tần số:

Giá trị

x1

x2

xk

Tần số

n1

n2

nk

Khi đó, công thức tính phương sai trở thành:

S2=1nn1x1x¯2+n2x2x¯2+...+nkxkx¯2,

trong đó n = n1 + n2 + … + nk.

Có thể biến đổi công thức tính phương sai trên thành

S2=1nn1x12+n2x22+...+nkxk2x¯.

Ví dụ: Tính phương sai và độ lệch chuẩn của mẫu số liệu sau:

8; 10; 9; 7; 6; 10; 6; 7; 8; 9.

Hướng dẫn giải

Cỡ mẫu n = 10.

Số trung bình: (8 + 10 + 9 + 7 + 6 + 10 + 6 + 7 + 8 + 9) : 10 = 8.

Phương sai mẫu số liệu là:

S2 =110 (82 + 102 + 92 + 72 + 62 + 102 + 62 + 72 + 82 + 92) – 82 = 2.

Độ lệch chuẩn mẫu số liệu là S = S2=21,41 .

Ví dụ: Điều tra số con của mỗi hộ gia đình trong tổ dân cư xóm 2, kết quả được ghi lại ở bảng sau:

Số con

0

1

2

3

4

Số hộ gia đình

4

4

8

3

1

Tính phương sai và độ lệch chuẩn của mẫu số liệu.

Hướng dẫn giải

Tổng số hộ gia đình là: n = 4 + 4 + 8 + 3 + 1 = 20 (hộ gia đình).

Số trung bình của mẫu số liệu trên là

x¯=120(4 . 0 + 4 . 1 + 8 . 2 + 3 . 3 + 1 . 4) = 1,65

Phương sai của mẫu số liệu trên là:

S2 = (4 . 02 + 4 . 12 + 8 . 22 + 3 . 32 + 1 . 42) – 1,652 = 1,2275

Độ lệch chuẩn của mẫu số liệu trên là:

S=S2=1,22751,11.

2.2. Ý nghĩa của phương sai và độ lệch chuẩn

Phương sai là trung bình cộng của các bình phương độ lệch từ mỗi giá trị của mẫu số liệu đến số trung bình.

Phương sai và độ lệch chuẩn được dùng để đo mức độ phân tán của các số liệu trong mẫu quanh số trung bình. Phương sai và độ lệch chuẩn càng lớn thì các giá trị của mẫu càng cách xa nhau (có độ phân tán lớn).

Ví dụ: Bảng dưới đây thống kê tổng số giờ nắng trong năm 2019 theo từng tháng được đo bởi hai trạm quan sát khí tượng đặt ở Tuyên Quang và Cà Mau.

a) Hãy tính phương sai và độ lệch chuẩn của dữ liệu từng tỉnh.

b) Nêu nhận xét về sự thay đổi tổng số giờ nắng theo từng tháng ở mỗi tỉnh.

Hướng dẫn giải

a)

* Tỉnh Tuyên Quang:

+ Số trung bình:

x1¯=25+89+72+117+106+177+156+203+227+146+117+14512131,67.

+ Phương sai mẫu số liệu ở tỉnh Tuyên Quang là:S12=112252+892+722+1172+1062+1772+1562+2032+2272+1462+1172+1452≈ 2920,34.

+ Độ lệch chuẩn mẫu số liệu ở tỉnh Tuyên Quang là:

S1 = S12=2920,3454,04 .

* Tỉnh Cà Mau:

+ Số trung bình:

x2¯=180+223+257+245+191+111+141+134+130+122+157+17312=172.

+ Phương sai mẫu số liệu ở tỉnh Cà Mau là:

S22=112(1802 + 2232 + 2572 + 2452 + 1912 + 1112 + 1412 + 1342 + 1302 + 1222 + 1572 + 1732) – 1722 = 2183.

+ Độ lệch chuẩn mẫu số liệu ở tỉnh Cà Mau là:

S2 = S22=218346,72 .

b) Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở tỉnh Tuyên Quang cao hơn tỉnh Cà Mau nên tổng số giờ nắng trong năm 2019 theo từng tháng ở tỉnh Tuyên Quang có độ phân tán cao hơn ở tỉnh Cà Mau. Do đó, sự thay đổi tổng số giờ nắng theo từng tháng ở tỉnh Cà Mau ổn định (có ít sự thay đổi) hơn so với tỉnh Tuyên Quang.

Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Bài tập cuối chương 6

Bài 1: Dùng máy tính cầm tay để tính toán với số gần đúng và tính các số đặc trưng của mẫu số liệu thống kê

Bài 2: Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê

Đánh giá

0

0 đánh giá