Giải toán 10 trang 121 Tập 1 Chân trời sáng tạo

390

Với Giải toán 10 trang 121 Tập 1 Chân trời sáng tạo chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải toán 10 trang 121 Tập 1 Chân trời sáng tạo

Thực hành 1 trang 121 Toán lớp 10: Hãy tìm khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:

a) 10; 13; 15; 2; 10; 19; 2; 5; 7.

b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15.

Phương pháp giải:

Cho mẫu số liệu: x1,x2,...,xn

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

+) Khoảng biến thiên: R=XnX1

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

Khoảng tứ phân vị: ΔQ=Q3Q1

Lời giải:

a) Xét mẫu số liệu đã sắp xếp là: 2;2;5;7;10;10;13;15;19

Khoảng biến thiên của mẫu số liệu là: R=192=17.

Cỡ mẫu là n=9 là số lẻ nên giá trị tứ phân vị thứ hai là: Q2=10.

Tứ phân vị thứ nhất là trung vị của mẫu: 2;2;5;7. Do đó Q1=3,5

Tứ phân vị thứ ba là trung vị của mẫu: 10;13;15;19. Do đó Q3=14

Khoảng tứ phân vị của mẫu là: ΔQ=143,5=10,5

b) Xét mẫu số liệu đã sắp xếp là: 1;2;5;5;9;10;10;15;15;19

Khoảng biến thiên của mẫu số liệu là: R=191=18.

Cỡ mẫu là n=10 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=9,5.

Tứ phân vị thứ nhất là trung vị của mẫu: 1;2;5;5;9. Do đó Q1=5.

Tứ phân vị thứ ba là trung vị của mẫu: 10;10;15;15;19. Do đó Q3=15

Khoảng tứ phân vị của mẫu là: ΔQ=155=10

Vận dụng 1 trang 121 Toán lớp 10: Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).

Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.

b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.

Phương pháp giải:

a) Cho mẫu số liệu: x1,x2,...,xn

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

+) Khoảng biến thiên: R=XnX1

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

Khoảng tứ phân vị: ΔQ=Q3Q1

b) So sánh khoảng biến thiên

Lời giải:

a)

+) Tỉnh Lai Châu: Xét mẫu số liệu đã sắp xếp là:

14,214,818,618,820,321,022,723,523,624,224,624,7

 Khoảng biến thiên của mẫu số liệu là: R=24,714,2=10,5.

Cỡ mẫu là n=12 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=21,85.

Tứ phân vị thứ nhất là trung vị của mẫu: 14,214,818,618,820,321,0. Do đó Q1=18,7.

Tứ phân vị thứ ba là trung vị của mẫu: 22,723,523,624,224,624,7. Do đó Q3=23,9

Khoảng tứ phân vị của mẫu là: ΔQ=23,918,7=5,2

+) Tỉnh Lâm Đổng: Xét mẫu số liệu đã sắp xếp là:

16,016,317,417,518,518,618,719,319,519,820,220,3

Khoảng biến thiên của mẫu số liệu là: R=20,316,0=4,3.

Cỡ mẫu là n=12 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=18,65.

Tứ phân vị thứ nhất là trung vị của mẫu: 16,016,317,417,518,518,6. Do đó Q1=17,45.

Tứ phân vị thứ ba là trung vị của mẫu: 18,719,319,519,820,220,3. Do đó Q3=19,65

Khoảng tứ phân vị của mẫu là: ΔQ=19,6517,45=2,2

Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải toán lớp 10 trang 120 Tập 1

Giải toán lớp 10 trang 122 Tập 1

Giải toán lớp 10 trang 124 Tập 1

Giải toán lớp 10 trang 125 Tập 1

Đánh giá

0

0 đánh giá