Vận dụng 1 trang 121 Toán 10 Tập 1 | Chân trời sáng tạo Giải Toán lớp 10

2.5 K

Với giải Vận dụng 1 trang 121 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 4: Các đặc trưng đo mức độ phân tán của mẫu số liệu

Vận dụng 1 trang 121 Toán lớp 10: Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).

Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.

b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.

Phương pháp giải:

a) Cho mẫu số liệu: x1,x2,...,xn

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

+) Khoảng biến thiên: R=XnX1

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

Khoảng tứ phân vị: ΔQ=Q3Q1

b) So sánh khoảng biến thiên

Lời giải:

a)

+) Tỉnh Lai Châu: Xét mẫu số liệu đã sắp xếp là:

14,214,818,618,820,321,022,723,523,624,224,624,7

 Khoảng biến thiên của mẫu số liệu là: R=24,714,2=10,5.

Cỡ mẫu là n=12 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=21,85.

Tứ phân vị thứ nhất là trung vị của mẫu: 14,214,818,618,820,321,0. Do đó Q1=18,7.

Tứ phân vị thứ ba là trung vị của mẫu: 22,723,523,624,224,624,7. Do đó Q3=23,9

Khoảng tứ phân vị của mẫu là: ΔQ=23,918,7=5,2

+) Tỉnh Lâm Đổng: Xét mẫu số liệu đã sắp xếp là:

16,016,317,417,518,518,618,719,319,519,820,220,3

Khoảng biến thiên của mẫu số liệu là: R=20,316,0=4,3.

Cỡ mẫu là n=12 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2=18,65.

Tứ phân vị thứ nhất là trung vị của mẫu: 16,016,317,417,518,518,6. Do đó Q1=17,45.

Tứ phân vị thứ ba là trung vị của mẫu: 18,719,319,519,820,220,3. Do đó Q3=19,65

Khoảng tứ phân vị của mẫu là: ΔQ=19,6517,45=2,2

Lý thuyết Khoảng biến thiên và khoảng tứ phân vị

1.1. Khoảng biến thiên và khoảng tứ phân vị

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

x≤ x2 ≤ … ≤ xn.

• Khoảng biến thiên của một mẫu số liệu, kí hiệu là R, là hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đó, tức là:

R = xn – x1.

• Khoảng tứ phân vị, kí hiệu là ∆Q, là hiệu giữa Q3­ và Q1, tức là:

Q = Q3 – Q1.

Ví dụ: Hãy tính khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu:

10; 3; 5; 7; 20; 1; 4; 9.

Hướng dẫn giải

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được: 1; 3; 4; 5; 7; 9; 10; 20.

- Khoảng biến thiên của mẫu số liệu là R = 20 – 1 = 19.

- Cỡ mẫu là n = 8, là số chẵn nên giá trị tứ phân vị thứ hai là Q2 = 6.

- Tứ phân vị thứ nhất là trung vị của mẫu: 10; 3; 5; 7. Do đó Q1 = 4.

- Tứ phân vị thứ 3 là trung vị của mẫu: 7; 9; 10; 20. Do đó Q3 = 9,5.

- Khoảng tứ phân vị của mẫu là: ∆Q = 9,5 – 4 = 5,5.

1.2. Ý nghĩa của khoảng biến thiên và khoảng tứ phân vị

Khoảng biến thiên đặc trưng cho độ phân tán của toàn bộ mẫu số liệu.

Khoảng tứ phân vị đặc trưng cho độ phân tán của một nửa các số liệu, có giá trị thuộc đoạn từ Q1 đến Q3 trong mẫu.

Khoảng tứ phân vị không bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu.

Ví dụ: Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.

b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.

Hướng dẫn giải

a)

* Tỉnh Lai Châu:

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

14,2; 14,8; 18,6; 18,8; 20,3; 21,0; 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.

+ Khoảng biến thiên của mẫu số liệu là: R = 24,7 – 14,2 = 10,5.

+ Cỡ mẫu là n = 12 là số chẵn nên giá trị tứ phân vị thứ hai là:

Q1221,0+22,7=21,85 .

+ Tứ phân vị thứ nhất là trung vị của mẫu: 14,2; 14,8; 18,6; 18,8; 20,3; 21,0.

Do đó Q1 = 1218,6+18,8=18,7 .

+ Tứ phân vị thứ ba là trung vị của mẫu: 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.

Do đó Q3 = 1223,6+24,2=23,9 .

+ Khoảng tứ phân vị của mẫu là: ∆Q = 23,9 – 18,7 = 5,2.

* Tỉnh Lâm Đồng:

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

16,0; 16,3; 17,4; 17,5; 18,5; 18,6; 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.

+ Khoảng biến thiên của mẫu số liệu là: R= 20,3 – 16,0 = 4,3.

+ Cỡ mẫu là n = 12 là số chẵn nên giá trị tứ phân vị thứ hai là:

Q'1218,6+18,7=18,65 .

+ Tứ phân vị thứ nhất là trung vị của mẫu: 16,0; 16,3; 17,4; 17,5; 18,5; 18,6.

Do đó Q'1 = 1217,4+17,5=17,45 .

+ Tứ phân vị thứ ba là trung vị của mẫu: 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.

Do đó Q'3 = 1219,5+19,8=19,65 .

+ Khoảng tứ phân vị của mẫu là: ∆'Q = 19,65 – 17,45 = 2,2.

b) Xét về cả khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của cả hai tỉnh, ta thấy: 10,5 > 4,3 hay R > R' và 5,2 > 2,2 hay ∆Q > ∆'Q.

Điều đó có nghĩa là trong một năm, nhiệt độ ở Lâm Đồng ít thay đổi hơn.

1.3. Giá trị ngoại lệ  

Khoảng tứ phân vị được dùng để xác định các giá trị ngoại lệ trong mẫu, đó là các giá trị quá nhỏ hay quá lớn so với đa số các giá trị của mẫu. Cụ thể, phần tử x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5∆Q hoặc x < Q1 – 1,5∆Q.

Sự xuất hiện của các giá trị ngoại lệ làm cho số trung bình và phạm vi của mẫu thay đổi lớn. Do đó, khi mẫu có giá trị ngoại lệ, người ta thường sử dụng trung vị và khoảng tứ phân vị để đo mức độ tập trung và mức độ phân tán của đa số các phần tử trong mẫu số liệu.

Ví dụ: Trong ví dụ ở phần 1.1, ta có:

Q1 – 1,5∆Q = 4 – 1,5 . 5,5 = – 4,25

Q3 + 1,5∆Q = 9,5 + 1,5 . 5,5 = 17,75

Do đó, mẫu có một giá trị ngoại lệ là 20.

Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

HĐ Khởi động trang 120 Toán lớp 10: Nhiệt độ không khí trung bình các tháng trong năm 2019 tại Lai Châu và Lâm Đồng (đơn vị: độ C)...

HĐ Khám phá 1 trang 120 Toán lớp 10: Thời gian hoàn thành bài chạy 5 km (tính theo phút) của hai nhóm thanh niên được cho ở bảng sau:...

Thực hành 1 trang 121 Toán lớp 10: Hãy tìm khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:...

Thực hành 2 trang 122 Toán lớp 10: Hãy tìm giá trị ngoại lệ của mẫu số liệu: 37; 12; 3; 9; 10; 9; 12; 3; 10...

HĐ Khám phá 2 trang 122 Toán lớp 10: Hai cung thủ A và B đã ghi lại kết quả từng lần bắn của mình ở bảng sau:...

Vận dụng 2 trang 124 Toán lớp 10: Bảng dưới đây thống kê tổng số giờ nắng trong năm 2019 theo từng tháng được đo bởi hai trạm quan sát khí tượng đặt ở Tuyên Quang và Cà Mau...

Bài 1 trang 124 Toán lớp 10: Hãy chọn ngẫu nhiên trong lớp ra 5 bạn nam và 5 bạn nữ rồi đo chiều cao các bạn đó. So sánh xem chiều cao của các bạn nam hay các bạn nữ đồng đều hơn...

Bài 2 trang 124 Toán lớp 10: Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và các giá trị ngoại lệ của các mẫu số liệu sau:...

Bài 3 trang 125 Toán lớp 10: Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:...

Bài 4 trang 125 Toán lớp 10: Hãy so sánh số trung bình, phương sai và độ lệch chuẩn của ba mẫu số liệu sau:...

Bài 5 trang 125 Toán lớp 10: Sản lượng lúa các năm từ 2014 đến 2018 của hai tỉnh Thái Bình và Hậu Giang được cho ở bảng sau (đơn vị: nghìn tấn)...

Bài 6 trang 125 Toán lớp 10: Kết quả điều tra mức lương hằng tháng của một số công nhân của hai nhà máy A và B được cho ở bảng sau (đơn vị: triệu đồng):...

Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Bài 4: Các số đặc trưng mức độ phân tán của mẫu số liệu

Bài tập cuối chương 6

Bài 1: Dùng máy tính cầm tay để tính toán với số gần đúng và tính các số đặc trưng của mẫu số liệu thống kê

Bài 2: Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê

Đánh giá

0

0 đánh giá