Với giải Bài 6 trang 119 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 6 trang 119 Toán lớp 10: Tổng số điểm mà các thành viên đội tuyển Olympic Toán quốc tế (IMO) của Việt Nam đạt được trong 20 kì thi được cho ở bảng sau:
Có ý kiến cho rằng điểm thi của đội tuyển giai đoạn 2001 – 2010 cao hơn giai đoạn 2011 – 2020. Hãy sử dụng số trung bình và trung vị để kiểm nghiệm xem ý kiến trên có đúng không?
Phương pháp giải:
+) Số trung bình:
+) Trung vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2: Tình trung vị:
Lời giải:
+) Giai đoạn 2001 – 2010
Số trung bình
Sắp sếp số liệu theo thứ tự không giảm, ta được:
Do , là số chẵn nên trung vị là:
+) Giai đoạn 2011 – 2020
Số trung bình
Sắp sếp số liệu theo thứ tự không giảm, ta được:
Do , là số chẵn nên trung vị là:
+) So sánh theo số trung bình hay số trung vị ta đều thấy điểm thi của đổi tuyển giai đoạn 2001 – 2010 cao hơn giai đoạn 2011 – 2020.
Vậy ý kiến trên là đúng.
Bài tập vận dụng:
Bài 1. Hãy tìm số trung bình, tứ phân vị và mốt của mẫu số liệu sau:
56; 45; 65; 45; 56; 78; 100; 78; 78.
Hướng dẫn giải
Cỡ mẫu: n = 9.
Số trung bình: .
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
45; 45; 56; 56; 65; 78; 78; 78; 100.
Vì cỡ mẫu là 9, là số lẻ nên tứ phân vị thứ hai là Q2 = 65.
Tứ phân vị thứ nhất là trung vị của mẫu: 45; 45; 56; 56. Do đó Q1 = = 50,5.
Tứ phân vị thứ ba là trung vị của mẫu: 78; 78; 78; 100. Do đó Q3 = = 78.
Giá trị 78 có tần số lớn nhất nên mốt của mẫu số liệu là Mo = 78.
Bài 2. Hãy tìm số trung bình, trung vị và mốt của mẫu số liệu sau:
Giá trị |
20 |
25 |
30 |
35 |
Tần số |
2 |
3 |
5 |
7 |
Hướng dẫn giải
Cỡ mẫu n = 2 + 3 + 5 + 7 = 17.
Số trung bình: .
Sắp xếp các số liệu đã cho theo thứ tự không giảm, ta được:
20; 20; 25; 25; 25; 30; 30; 30; 30; 30; 35; 35; 35; 35; 35; 35; 35.
Vì cỡ mẫu là 17 là số lẻ nên trung vị là Me = 30.
Giá trị 35 có tần số lớn nhất nên mốt của mẫu số liệu là Mo = 35.
Bài 3. Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một sản phẩm của một số thí sinh ở bảng sau:
Thời gian (đơn vị: phút) |
5 |
6 |
7 |
8 |
35 |
Số thí sinh |
1 |
3 |
5 |
2 |
1 |
a) Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.
b) Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.
Hướng dẫn giải
a) Cỡ mẫu là n = 1 + 3 + 5 + 2 + 1 = 12.
Số trung bình là: .
Số thí sinh là trong thời gian 7 phút là nhiều nhất nên mốt của mẫu là Mo = 7.
Sắp xếp các giá trị của mẫu theo thứ tự không giảm, ta được:
5; 6; 6; 6; 7; 7; 7; 7; 7; 8; 8; 35.
Vì cỡ mẫu là số chẵn nên tứ phân vị thứ hai là Q2 = .
Tứ phân vị thứ nhất là trung vị của mẫu: 5; 6; 6; 6; 7; 7. Do đó Q1 = 6.
Tứ phân vị thứ ba là trung vị của mẫu: 7; 7; 7; 8; 8; 35. Do đó Q3 = 7,5.
b) Dựa theo số trung bình, vì 9,08 > 7 nên thời gian thi của các thí sinh năm nay nhiều hơn năm ngoái.
Dựa theo trung vị, thì cả hai năm trung vị đều bằng nhau và bằng 7 nên thời gian của các thí sinh trong hai năm là ngang nhau.
Vì trong mẫu số liệu của năm nay có số liệu 35 lớn hơn so với các số liệu còn lại rất nhiều, do đó ta dùng trung vị để so sánh sẽ phù hợp hơn.
Vậy thời gian thi nói chung của các thí sinh trong hai năm là ngang nhau.
Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 115 Toán lớp 10: Hãy tìm trung vị của các số liệu ở Vận dụng 1 và Vận dụng 2...
Thực hành 2 trang 117 Toán lớp 10: Hãy tìm tứ phân vị của các mẫu số liệu sau:...
Bài 1 trang 118 Toán lớp 10: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:...
Bài 2 trang 118 Toán lớp 10: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:...
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4: Các số đặc trưng mức độ phân tán của mẫu số liệu