Với giải Thực hành 3 trang 117 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Thực hành 3 trang 117 Toán lớp 10: Hãy tìm mốt của số liệu điểm kiểm tra các bạn Tổ 1 trong Hoạt động khám phá 1.
Lời giải:
Điểm số bài kiểm tra môn Toán của các bạn trong Tổ 1 là 6; 10; 6; 8; 7; 10
Số điểm 6 là 2, bằng số điểm 10 và nhiều hơn số điểm 7, điểm 8. Do đó mẫu số liệu trên có
Lý thuyết Mốt
Cho mẫu số liệu dưới dạng bảng tần số. Giá trị có tần số lớn nhất được gọi là mốt của mẫu số liệu và kí hiệu là Mo.
Ý nghĩa của mốt: Mốt đặc trưng cho giá trị xuất hiện nhiều nhất trong mẫu.
Chú ý: Một mẫu số liệu có thể có rất nhiều mốt. Khi tất cả các giá trị trong mẫu số liệu có tần số xuất hiện bằng nhau thì mẫu số liệu đó không có mốt.
Ví dụ: Cho mẫu số liệu:
Giá trị |
35 |
38 |
40 |
45 |
Tần số |
10 |
5 |
6 |
3 |
Ta thấy giá trị 35 có tần số lớn nhất, do đó, mốt của mẫu số liệu trên là Mo = 35.
Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 115 Toán lớp 10: Hãy tìm trung vị của các số liệu ở Vận dụng 1 và Vận dụng 2...
Thực hành 2 trang 117 Toán lớp 10: Hãy tìm tứ phân vị của các mẫu số liệu sau:...
Bài 1 trang 118 Toán lớp 10: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:...
Bài 2 trang 118 Toán lớp 10: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:...
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4: Các số đặc trưng mức độ phân tán của mẫu số liệu