Hoạt động 3 trang 106, 107 Toán 8 Tập 1 Cánh diều | Giải bài tập Toán lớp 8

780

Với giải Hoạt động 3 trang 106, 107 Toán lớp 8 Tập 1 Cánh diều chi tiết trong Bài 4: Hình bình hành giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 4: Hình bình hành

Hoạt động 3 trang 106, 107 Toán 8 Tập 1: a) Cho tứ giác ABCD có AB = CD, BC = DA (Hình 39).

• Hai tam giác ABC và CDA có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: BAC^  DCA^; ACB^  CAD^.

• ABCD có phải là hình bình hành hay không?

Hoạt động 3 trang 106, 107 Toán 8 Tập 1 Cánh diều | Giải Toán 8

b) Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường (Hình 40).

• Hai tam giác ABO và CDO có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: BAC^  DCA^; ACB^  CAD^.

• ABCD có phải là hình bình hành hay không?

Hoạt động 3 trang 106, 107 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Lời giải:

a) • Xét ΔABC và ΔCDA có:

AB = CD (giả thiết); BC = DA (giả thiết); AC là cạnh chung

Do đó ΔABC = ΔCDA (c.c.c)

Suy ra BAC^=DCA^  ACB^=CAD^ (các cặp góc tương ứng).

• Ta có BAC^=DCA^  BAC^,DCA^ ở vị trí so le trong nên AB // CD.

          ACB^=CAD^ và ACB^,CAD^ ở vị trí so le trong nên AD // BC.

Tứ giác ABCD có AB // CD và AD // BC nên là hình bình hành.

b) • Xét ΔABO và ΔCDO có:

OA = OC (giả thiết); AOB^=COD^ (đối đỉnh); OB = OD (giả thiết)

Do đó ΔABO = ΔCDO (c.g.c)

Suy ra BAO^=DCO^ (cặp góc tương ứng)

Hay BAC^=DCA^.

Chứng minh tương tự ta cũng có: ΔCBO = ΔADO (c.g.c)

Suy ra OCB^=OAD^ (cặp góc tương ứng)

Hay ACB^=CAD^.

• Ta có BAC^=DCA^  BAC^,DCA^ ở vị trí so le trong nên AB // CD.

          ACB^=CAD^  ACB^,CAD^ ở vị trí so le trong nên AD // BC.

Tứ giác ABCD có AB // CD và AD // BC nên là hình bình hành.

Lý thuyết Dấu hiệu nhận biết

- Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành.

- Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

Ví dụ: Cho tứ giác ABCD có hai cạnh đối AB và CD song song và bằng nhau, hai đường chéo AC và BD cắt nhau tại O. Chứng minh:

a) ∆OAB = ∆OCD;

b) Tứ giác ABCD là hình bình hành.

Hình bình hành (Lý thuyết Toán lớp 8) | Cánh diều

Hướng dẫn giải

a) Xét hai tam giác OAB và OCD, ta có:

AC ⊥ BD (so le trong);

AB = CD (giả thiết);

OAB^=ODC^ (so le trong)

Do đó ∆OAB = ∆OCD (g.c.g)

b) Do ∆OAB = ∆OCD nên OA = OC, OB = OD (các cặp cạnh tương ứng)

Suy ra tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường. Do đó, tứ giác ABCD là hình bình hành.

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá