Hoạt động 1 trang 94, 95 Toán 8 Tập 1 Cánh diều | Giải bài tập Toán lớp 8

300

Với giải Hoạt động 1 trang 94, 95 Toán lớp 8 Tập 1 Cánh diều chi tiết trong Bài 1: Định lí Pythagore giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 1: Định lí Pythagore

Hoạt động 1 trang 94, 95 Toán 8 Tập 1: Thực hiện các hoạt động sau:

a) Vẽ và cắt giấy để có 4 hình tam giác vuông như nhau với độ dài cạnh huyền là a, độ dài hai cạnh góc vuông là b và c, trong đó a, b, c có cùng đơn vị độ dài (Hình 2).

Hoạt động 1 trang 94, 95 Toán 8 Tập 1 Cánh diều | Giải Toán 8

b) Vẽ hình vuông ABCD có cạnh là b + c như Hình 3. Đặt 4 hình tam giác vuông đã cắt ở câu a lên hình vuông ABCD vừa vẽ, phần chưa bị che đi là hình vuông MNPQ với độ dài cạnh là a (Hình 4).

c) Gọi S1 là diện tích của hình vuông ABCD. Gọi S2 là tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ. So sánh S1 và S2.

d) Dựa vào kết quả ở câu c, dự đoán mối liên hệ giữa a2 và b2 + c2.

Lời giải:

a) Học sinh thực hiện theo hướng dẫn.

b) Học sinh thực hiện theo hướng dẫn.

c) Diện tích của hình vuông ABCD là: S1 = (b + c)2 (đơn vị diện tích).

Diện tích của hình vuông MNPQ là: a2 (đơn vị diện tích).

Diện tích của tam giác vuông AQM là: 12bc (đơn vị diện tích).

Tổng diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ là:

4.12bc=2bc (đơn vị diện tích).

Khi đó ta có: S2 = a2 + 2bc (đơn vị diện tích).

d) Theo câu b, ta có: diện tích của hình vuông ABCD bằng tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ, hay S1 = S2

Do đó (b + c)2 = a2 + 2bc

Hay b2 + 2bc + c2 = a2 + 2bc

Suy ra b2 + c2 = a2.

Vậy a2 = b2 + c2.

Lý thuyết Định lí Pythagore

Trong một tam giác vuông, bình phương độ dài của cạnh huyền bằng tổng các bình phương độ dài của hai cạnh góc vuông.

ΔABC,A^=90oBC2=AB2+AC2

   (ảnh 1)

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá