Bài 5 trang 80 Toán 8 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 8

1.2 K

Với giải Bài 5 trang 80 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hình bình hành – Hình thoi giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 4: Hình bình hành – Hình thoi

Bài 5 trang 80 Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của các cạnh AB và CD; E và F lần lượt là giao điểm của AK và CI với BD.

a) Chứng minh tứ giác AEFI là hình thang.

b) Chứng minh DE = EF = FB.

Lời giải:

Bài 5 trang 80 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

a) Do ABCD là hình bình hành nên AB = CD và AB // CD.

Vì I là trung điểm của AB nên AI=IB=12AB.

Vì K là trung điểm của CD nên CK=DK=12CD.

Do đó AI = CK.

Tứ giác AICK có AI // CK (do AB // CD) và AI = CK nên là hình bình hành (dấu hiệu nhận biết).

Suy ra AK // CI hay AE // IF.

Tứ giác AEFI có AE // IF nên là hình thang.

b) Gọi O là giao điểm của hai đường chéo hình bình hành ABCD.

Do đó O là trung điểm của AC và BD.

Xét DABC có BO, CI là hai đường trung tuyến của tam giác và BO, CI cắt nhau tại F nên F là trọng tâm của DABC.

Suy ra BF=23BO và FO=13BO.

Chứng minh tương tự đối với DACD ta cũng có E là trọng tâm của DACD.

Suy ra DE=23DO và EO=13DO.

Lại có O là trung điểm BD nên BO = DO.

Do đó BF=DE=23BO và FO=EO=13BO

Mặt khác EF=EO+FO=13BO+13BO=23BO.

Suy ra DE=EF=FB=23BO.

Vậy DE = EF = FB.

Sơ đồ tư duy Hình bình hành- hình thoi.

Đánh giá

0

0 đánh giá