Thực hành 3 trang 61 Toán 8 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 8

1.9 K

Với giải Thực hành 3 trang 61 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Định lí Pythagore giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 1: Định lí Pythagore

Thực hành 3 trang 61 Toán 8 Tập 1: Tính các độ dài PN và BC trong Hình 9.

Thực hành 3 trang 61 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Áp dụng định lí Pythagore vào tam giác OPM vuông tại P, ta có:

OM2 = OP2 + MP2

Suy ra OP2 = OM2 – MP2 = 252 – 72 = 625 – 49 = 576.

Áp dụng định lí Pythagore vào tam giác OPN vuông tại P, ta có:

ON2 = OP2 + PN2

Suy ra PN2 = ON2 – OP2 = 302 – 576 = 900 – 576 = 324 = 182.

Vậy PN = 18 cm.

b)

Thực hành 3 trang 61 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Vẽ CH vuông góc với AB như hình vẽ, ta có:

CH = 4 cm; HB = 10 – 7 = 3 (cm).

Áp dụng định lí Pythagore vào tam giác CHB vuông tại H, ta có:

BC2 = CH2 + HB2 = 42 + 32 = 25 = 52.

Vậy BC = 5 cm.

Lý thuyết Vận dụng định lí Pythagore

Ta có thể vận dụng định lí Pythagore để tính nhiều yếu tố khoa học và đời sống như tính độ dài đoạn thẳng, khoảng cách giữa hai điểm, chiều dài, chiều cao của vật, …

Ví dụ 3. Một cái thang dài 5 m đang dựa vào một bức tường, chân thang cách chân tường 3 m (hình vẽ). Tính chiều cao mà thang có thể vươn tới.

Định lí Pythagore (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

Hướng dẫn giải

Gọi AC là khoảng cách từ chân thang đến chân tường; BC là độ dài của thang và AB là chiều cao thang có thể vươn tới.

Ta được tam giác vuông ABC như hình dưới.

Định lí Pythagore (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

Áp dụng định lí Pythagore vào tam giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2

Suy ra AB2 = BC2 – AC2 = 52 – 32 = 25 – 9 = 16 = 42.

Vậy chiều cao mà thang có thể vươn tới là AB = 4 m.

Đánh giá

0

0 đánh giá