Giải SGK Toán 8 Bài 1 (Chân trời sáng tạo): Định lí Pythagore

7.6 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 8 Bài 1: Định lí Pythagore chi tiết sách Toán 8 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 1: Định lí Pythagore

Giải Toán 8 trang 58 Tập 1

Khởi động trang 58 Toán 8 Tập 1: Hãy so sánh diện tích hình vuông màu xanh với tổng diện tích của hai hình vuông màu đỏ và màu vàng.

Khởi động trang 58 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Hình vuông màu xanh có diện tích là: 52 = 25 (đơn vị diện tích).

Hình vuông màu đỏ có diện tích là: 42 = 16 (đơn vị diện tích).

Hình vuông màu vàng có diện tích là: 32 = 9 (đơn vị diện tích).

Tổng diện tích của hai hình vuông màu đỏ và màu vàng là: 16 + 9 = 25 (đơn vị diện tích).

Vậy diện tích hình vuông màu xanh bằng tổng diện tích của hai hình vuông màu đỏ và màu vàng.

1. Định lý Pythagore

Khám phá 1 trang 58 Toán 8 Tập 1: Cho một tam giác vuông có hai cạnh góc vuông là a, b và cạnh huyền là c.

‒ Lấy một tờ bìa lớn, cắt tám hình tam giác vuông bằng tam giác vuông đã cho và cắt hai hình vuông lớn cùng có cạnh bằng a + b.

‒ Đặt bốn tam giác vuông lên hình vuông thứ nhất như trong Hình 1a. Phần bìa không bị che lấp gồm hai hình vuông có cạnh lần lượt là a và b. Tính diện tích phần bìa đó theo a và b.

‒ Đặt bốn tam giác vuông còn lại lên hình vuông thứ hai như trong Hình 1b. Phần bìa không bị che lấp là hình vuông có cạnh là c. Tính diện tích phần bìa đó theo c.

‒ Rút ra kết luận về quan hệ giữa a2 + b2 và c2.

Khám phá 1 trang 58 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

• Diện tích hình vuông có cạnh bằng a là: a2 (đơn vị diện tích).

Diện tích hình vuông có cạnh bằng b là: b2 (đơn vị diện tích).

Diện tích phần bìa không bị che lấp trong hình vuông lớn ở Hình 1a là:

a2 + b2 (đơn vị diện tích).

• Diện tích phần bìa không bị che lấp trong hình vuông lớn ở Hình 1b chính là diện tích hình vuông có cạnh bằng c, và bằng: c2 (đơn vị diện tích).

• Trong cả hai hình đều đặt bốn tam giác vuông lên hai hình vuông lớn có cạnh bằng a + b.

Khi đó diện tích phần bìa không bị che lấp của cả hai hình sẽ bằng nhau.

Do đó a2 + b2 = c2.

Giải Toán 8 trang 59 Tập 1

Thực hành 1 trang 59 Toán 8 Tập 1: Tính độ dài cạnh EF, MN của các tam giác vuông trong Hình 3.

Thực hành 1 trang 59 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Hình 3a: Áp dụng định lí Pythagore vào tam giác vuông DEF có cạnh huyền EF, ta có:

EF2 = DE2 + DF2

Suy ra EF2 = 52 + 122 = 25 + 144 = 169 = 132.

Vậy EF = 13 cm.

Hình 3b: Áp dụng định lí Pythagore vào tam giác vuông MNP có cạnh huyền NP, ta có:

NP2 = MN2 + MP2

Suy ra MN2 = NP2 – MP2

           MN2 = 42 – 32 = 16 – 9 = 7.

Vậy EF = 7 cm.

Vận dụng 1 trang 59 Toán 8 Tập 1: Một chiếc ti vi màn hình phẳng có chiều rộng và chiều dài đo được lần lượt là 72 cm và 120 cm. Tính độ dài đường chéo của màn hình chiếc ti vi đó theo đơn vị inch (biết 1 inch ≈ 2,54 cm).

Vận dụng 1 trang 59 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Chiếc ti vi ở Hình 4 được mô tả bởi tam giác ABC vuông tại A có các kích thước như hình vẽ sau:

Vận dụng 1 trang 59 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Áp dụng định lí Pythagore vào tam giác ABC có cạnh huyền BC, ta có:

BC2 = AB2 + AC2 = 722 + 1202 = 5 184 + 14 400 = 19 584.

Suy ra BC = 2434 (cm).

Vậy độ dài đường chéo của màn hình chiếc ti vi đó theo đơn vị inch là:

2434:2,5455 (inch).

2. Định lý Pythagore đảo

Khám phá 2 trang 59 Toán 8 Tập 1: Vẽ vào vở tam giác ABC có AB = 12 cm, AC = 5 cm, BC = 13 cm, rồi xác định số đo BAC^ bằng thước đo góc

Lời giải:

Ta vẽ tam giác ABC có AB = 12 cm, AC = 5 cm, BC = 13 cm như sau:

• Vẽ đoạn thẳng AB = 12 cm;

• Vẽ cung tròn tâm A bán kính 5 cm và cung tròn tâm B bán kính 13 cm. Hai cung tròn này cắt nhau tại một điểm, điểm này là điểm C.

Khám phá 2 trang 59 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Dùng thước đo góc (đặt thước như hình vẽ trên) ta xác định được BAC^=90°.

Giải Toán 8 trang 60 Tập 1

Thực hành 2 trang 60 Toán 8 Tập 1: Tìm tam giác vuông trong các tam giác sau:

a) Tam giác EFK có EF = 9 m, FK = 12 m, EK = 15 m.

b) Tam giác PQR có PQ = 17 cm, QR = 12 cm, PR = 10 cm.

c) Tam giác DEF có DE = 8 m, DF = 6 m, EF = 10 m.

Lời giải:

a) Ta có: 152 = 92 + 122, suy ra EK2 = EF2 + FK2.

Vậy tam giác EFK vuông tại F.

b) Ta có PQ là cạnh dài nhất và 172 ≠ 102 + 122, suy ra PQ2 ≠ PR2 + QR2.

Vậy tam giác PQR không phải là tam giác vuông.

c) Ta có: 102 = 62 + 82, suy ra EF2 = DF2 + DE2.

Vậy tam giác DEF vuông tại D.

Vận dụng 2 trang 60 Toán 8 Tập 1: a) Nam dự định làm một cái êke từ ba thanh nẹp gỗ. Nam đã có hai thanh làm hai cạnh góc vuông dài 6 cm và 8 cm. Hỏi thanh nẹp còn lại Nam phải làm có độ dài bao nhiêu? (Giả sử các mối nối không đáng kể)

b) Một khung gỗ ABCD (Hình 6) được tạo thành từ 5 thanh nẹp có độ dài như sau: AB = CD = 36 cm; BC = AD = 48 cm; AC = 60 cm. Chứng minh rằng ABC^ và ADC^ là các góc vuông.

Vận dụng 2 trang 60 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Giả sử chiếc êke mà Nam dự định làm được mô tả bởi tam giác ABC vuông tại A có kích thước như hình vẽ dưới đây: 

Vận dụng 2 trang 60 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Áp dụng định lí Pythagore cho tam giác ABC có BC là cạnh huyền, ta có:

BC2 = AB2 + AC2 = 62 + 82 = 36 + 64 = 100 = 102

Suy ra BC = 10 cm.

Vậy thanh nẹp còn lại Nam phải làm có độ dài 10 cm.

b) Xét DABC có: AB2 + BC2 = 362 + 482 = 3600 và AC2 = 602 = 3600.

Do đó AB2 + BC2 = AC2.

Vậy tam giác ABC vuông tại B nên ABC^ là góc vuông.

Xét DADC có: AD2 + DC2 = 482 + 362 = 3600 và AC2 = 602 = 3600.

Do đó AD2 + DC2 = AC2.

Vậy tam giác ADC vuông tại D nên ADC^ là góc vuông.

3. Vận dụng định lý Pythagore

Giải Toán 8 trang 61 Tập 1

Thực hành 3 trang 61 Toán 8 Tập 1: Tính các độ dài PN và BC trong Hình 9.

Thực hành 3 trang 61 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Áp dụng định lí Pythagore vào tam giác OPM vuông tại P, ta có:

OM2 = OP2 + MP2

Suy ra OP2 = OM2 – MP2 = 252 – 72 = 625 – 49 = 576.

Áp dụng định lí Pythagore vào tam giác OPN vuông tại P, ta có:

ON2 = OP2 + PN2

Suy ra PN2 = ON2 – OP2 = 302 – 576 = 900 – 576 = 324 = 182.

Vậy PN = 18 cm.

b)

Thực hành 3 trang 61 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Vẽ CH vuông góc với AB như hình vẽ, ta có:

CH = 4 cm; HB = 10 – 7 = 3 (cm).

Áp dụng định lí Pythagore vào tam giác CHB vuông tại H, ta có:

BC2 = CH2 + HB2 = 42 + 32 = 25 = 52.

Vậy BC = 5 cm.

Vận dụng 3 trang 61 Toán 8 Tập 1: Tính chiều dài cần cẩu AB trong Hình 10.

Vận dụng 3 trang 61 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét tam giác ABC có CB = 4 m, AC = AD – CD = 5 – 2 = 3 (m).

Áp dụng định lí Pythagore cho tam giác ABC vuông tại C, ta có:

AB2 = AC2 + CB2 = 32 + 42 = 25 = 52.

Suy ra AB = 5 m.

Vậy chiều dài cần cẩu AB là 5 m.

Bài tập

Bài 1 trang 61 Toán 8 Tập 1: Cho tam giác ABC vuông tại A.

a) Tính độ dài cạnh BC nếu biết AB = 7 cm, AC = 24 cm.

b) Tính độ dài cạnh AB nếu biết AC = 2 cm, BC = 13 cm.

c) Tính độ dài cạnh AC nếu biết BC = 25 cm, AB = 15 cm.

Lời giải:

a) Áp dụng định lí Pythagore cho tam giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2 = 72 + 242 = 49 + 576 = 625 = 252.

Vậy BC = 25 cm.

b) Áp dụng định lí Pythagore cho tam giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2.

Suy ra AB2 = BC2 – AC2 = 132 – 22 = 13 – 4 = 9 = 32.

Vậy AB = 3 cm.

c) Áp dụng định lí Pythagore cho tam giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2.

Suy ra: AC2 = BC2 – AB2 = 252 – 152 = 625 – 225 = 400 = 202.

Vậy AC = 20 cm.

Giải Toán 8 trang 62 Tập 1

Bài 2 trang 62 Toán 8 Tập 1: Tính độ cao của con diều so với mặt đất (Hình 11).

Bài 2 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Bài 2 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Đặt các điểm A, B, C như hình vẽ trên.

Áp dụng định lí Pythagore cho tam giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2.

Suy ra: AC2 = BC2 – AB2 = 502 – 252 = 2 500 – 625 = 1 875 = 2532.

Do đó AC = 253 (m).

Vậy độ cao của con diều so với mặt đất là: 1 + 253 (m).

Bài 3 trang 62 Toán 8 Tập 1: Lần lượt tính độ dài các cạnh huyền a, b, c, d của các tam giác vuông trong Hình 12. Hãy dự đoán kết quả của các cạnh huyền còn lại.

Bài 3 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Áp dụng định lí Pythagore lần lượt cho các tam giác vuông có cạnh huyền a, b, c, d trong Hình 12 ta có:

• a2 = 12 + 12 = 2, suy ra a = 2;

• b2 = a2 + 12 = 2 + 1 = 3, suy ra b = 3.

• c2 = b2 + 12 = 3 + 1 = 4, suy ra c = 4 = 2.

• d2 = c2 + 12 = 4 + 1 = 5, suy ra d = 5.

Dự đoán kết quả của các cạnh huyền còn lại:

e=6;f=7;g=8;h=9=3;i=10;j=11;k=12;l=13;m=14

Bài 4 trang 62 Toán 8 Tập 1: Chứng minh rằng tam giác ABC vuông trong các trường hợp sau:

a) AB = 8 cm, AC = 15 cm, BC = 17 cm;

b) AB = 29 cm, AC = 21 cm, BC = 20 cm;

c) AB = 12 cm, AC = 37 cm, BC = 35 cm.

Lời giải:

a) Ta có: 172 = 82 + 152. Suy ra BC2 = AB2 + AC2.

Vậy tam giác ABC vuông tại A.

b) Ta có 292 = 202 + 212. Suy ra AB2 = BC2 + AC2.

Vậy tam giác ABC vuông tại C.

c) Ta có 372 = 122 + 352. Suy ra AC2 = AB2 + BC2.

Vậy tam giác ABC vuông tại B.

Bài 5 trang 62 Toán 8 Tập 1: Cho biết thang của một xe cứu hoả có chiều dài 13 m, chân thang cách mặt đất 3 m và cách tường của toà nhà 5 m. Tính chiều cao mà thang có thể vươn tới.

Bài 5 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Bài 5 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Đặt các điểm A, B, C, H như hình vẽ trên.

Áp dụng định lí Pythagore cho tam giác ABC vuông tại C, ta có:

AB2 = AC2 + BC2.

Suy ra: AC2 = AB2 – BC2 = 132 – 52 = 169 – 25 = 144 = 122.

Do đó AC = 12 m và AH = 12 + 3 = 15 (m).

Vậy chiều cao mà thang có thể vươn tới là 15 m.

Bài 6 trang 62 Toán 8 Tập 1: Một con thuyền đang neo ở một điểm cách chân tháp hải đăng 180 m. Cho biết tháp hải đăng cao 25 m. Hãy tính khoảng cách từ thuyền đến ngọn hải đăng.

Bài 6 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Bài 6 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Đặt các điểm A, B lần lượt là vị trí của đỉnh tháp hải đăng, chân tháp hải đăng và C là vị trí của con thuyền.

Áp dụng định lí Pythagore cho tam giác ABC vuông tại B, ta có:

AC2 = AB2 + BC2 = 252 + 1802 = 625 + 32 400 = 33 025.

Suy ra AC ≈ 181,73 (m).

Vậy khoảng cách từ thuyền đến ngọn hải đăng khoảng 181,73 m.

Video bài giảng Toán 8 Bài 1: Định lí Pythagore - Chân trời sáng tạo

Xem thêm các bài giải SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 2

Bài 1: Định lí Pythagore

Bài 2: Tứ giác

Bài 3: Hình thang – Hình thang cân

Bài 4: Hình bình hành – Hình thoi

Lý thuyết Định lí Pythagore

1. Định lí Pythagore

Trong một tam giác vuông, bình phương độ dài của cạnh huyền bằng tổng các bình phương độ dài của hai cạnh góc vuông.

ΔABC,A^=90oBC2=AB2+AC2

   (ảnh 1)

2. Định lí Pythagore đảo

Nếu một tam giác có bình phương độ dài của một cạnh bằng tổng các bình phương độ dài của hai cạnh kia thì tam giác đó là tam giác vuông.

  (ảnh 2)

ΔABC,BC2=AB2+AC2A^=90o

Ví dụ:

Tam giác ABC có AB = 3cm, BC = 5cm, AC = 4cm thì tam giác ABC vuông tại A do 32+42=52, suy raBC2=AB2+AC2

Đánh giá

0

0 đánh giá