Khám phá 2 trang 59 Toán 8 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 8

392

Với giải Khám phá 2 trang 59 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Định lí Pythagore giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 1: Định lí Pythagore

Khám phá 2 trang 59 Toán 8 Tập 1: Vẽ vào vở tam giác ABC có AB = 12 cm, AC = 5 cm, BC = 13 cm, rồi xác định số đo BAC^ bằng thước đo góc

Lời giải:

Ta vẽ tam giác ABC có AB = 12 cm, AC = 5 cm, BC = 13 cm như sau:

• Vẽ đoạn thẳng AB = 12 cm;

• Vẽ cung tròn tâm A bán kính 5 cm và cung tròn tâm B bán kính 13 cm. Hai cung tròn này cắt nhau tại một điểm, điểm này là điểm C.

Khám phá 2 trang 59 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Dùng thước đo góc (đặt thước như hình vẽ trên) ta xác định được BAC^=90°.

Lý thuyết Định lí Pythagore đảo

Định lí Pythagore đảo:

Nếu một tam giác có bình phương độ dài của một cạnh bằng tổng các bình phương độ dài của hai cạnh kia thì tam giác đó là tam giác vuông.

Định lí Pythagore (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

GT

∆ABC, BC2 = AB2 + AC2

KL

A^=90°

Ví dụ 2. Các tam giác sau có phải là tam giác vuông không?

a) Tam giác ABC có AB = 6 m, BC = 8 m, AC = 10 m.

b) Tam giác DEF có DE = 4 dm, DF = 10 dm, EF = 6 dm.

Hướng dẫn giải

a) Ta có: 102 = 62 + 82, suy ra AC2 = AB2 + BC2.

Vậy tam giác ABC vuông tại B.

b) Ta có DF là cạnh dài nhất và 102 ≠ 42 + 62, suy ra DF2 ≠ DE2 + EF2.

Vậy tam giác DEF không phải là tam giác vuông.

Đánh giá

0

0 đánh giá