Vận dụng 2 trang 24 Toán 8 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 8

385

Với giải Vận dụng 2 trang 24 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Phân tích đa thức thành nhân tử giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 4: Phân tích đa thức thành nhân tử

Vận dụng 2 trang 24 Toán 8 Tập 1: Giải đáp câu hỏi ở Hoạt động khởi động (trang 23)

Lời giải:

Ta có: 993 – 99 = 99.(992 – 1)

                          = 99.(992 – 12)

                          = 99.(99 – 1).(99 + 1)

                          = 99.98.100

Do đó 993 – 99 chia hết cho cả ba số 98, 99 và 100.

Ta có: n3 – n = n(n2 – 1)

                     = n.(n – 1).(n + 1)

Do đó n3 – n chia hết cho n, n – 1 và n + 1.

Vậy phát biểu của cả hai bạn đều đúng.

Lý thuyết Phương pháp sử dụng hằng đẳng thức

Tùy trường hợp ta có thể sử dụng những hằng đẳng thức khác nhau để phân tích một đa thức thành nhân tử.

Ví dụ 2. Phân tích các đa thức sau thành nhân tử:

a) 9x2 – 12xy + 4y2;

b) 2x4 + 250xy3.

Hướng dẫn giải.

a) 9x2 – 12xy + 4y2 = (3x)2 – 2 . 3x . 2y + (2y)2 = (3x – 2y)2;

b) 2x4 + 250xy3 = 2x(x3 + 125y3) = 2x[x3 + (5y)3] = 2x(x + 5y)(x2 – 5xy + y2).

=>Cách làm như Ví dụ 2 gọi là phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.

Phương pháp sử dụng hằng đẳng thức

Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử.

=>Cần vận dụng linh hoạt các hằng đẳng thức để phù hợp với các nhân tử.

Đánh giá

0

0 đánh giá