Giải Toán 8 trang 62 Tập 1 Chân trời sáng tạo

369

Với lời giải Toán 8 trang 62 Tập 1 chi tiết trong Bài 1: Định lí Pythagore sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 1: Định lí Pythagore

Bài 2 trang 62 Toán 8 Tập 1: Tính độ cao của con diều so với mặt đất (Hình 11).

Bài 2 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Bài 2 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Đặt các điểm A, B, C như hình vẽ trên.

Áp dụng định lí Pythagore cho tam giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2.

Suy ra: AC2 = BC2 – AB2 = 502 – 252 = 2 500 – 625 = 1 875 = 2532.

Do đó AC = 253 (m).

Vậy độ cao của con diều so với mặt đất là: 1 + 253 (m).

Bài 3 trang 62 Toán 8 Tập 1: Lần lượt tính độ dài các cạnh huyền a, b, c, d của các tam giác vuông trong Hình 12. Hãy dự đoán kết quả của các cạnh huyền còn lại.

Bài 3 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Áp dụng định lí Pythagore lần lượt cho các tam giác vuông có cạnh huyền a, b, c, d trong Hình 12 ta có:

• a2 = 12 + 12 = 2, suy ra a = 2;

• b2 = a2 + 12 = 2 + 1 = 3, suy ra b = 3.

• c2 = b2 + 12 = 3 + 1 = 4, suy ra c = 4 = 2.

• d2 = c2 + 12 = 4 + 1 = 5, suy ra d = 5.

Dự đoán kết quả của các cạnh huyền còn lại:

e=6;f=7;g=8;h=9=3;i=10;j=11;k=12;l=13;m=14

Bài 4 trang 62 Toán 8 Tập 1: Chứng minh rằng tam giác ABC vuông trong các trường hợp sau:

a) AB = 8 cm, AC = 15 cm, BC = 17 cm;

b) AB = 29 cm, AC = 21 cm, BC = 20 cm;

c) AB = 12 cm, AC = 37 cm, BC = 35 cm.

Lời giải:

a) Ta có: 172 = 82 + 152. Suy ra BC2 = AB2 + AC2.

Vậy tam giác ABC vuông tại A.

b) Ta có 292 = 202 + 212. Suy ra AB2 = BC2 + AC2.

Vậy tam giác ABC vuông tại C.

c) Ta có 372 = 122 + 352. Suy ra AC2 = AB2 + BC2.

Vậy tam giác ABC vuông tại B.

Bài 5 trang 62 Toán 8 Tập 1: Cho biết thang của một xe cứu hoả có chiều dài 13 m, chân thang cách mặt đất 3 m và cách tường của toà nhà 5 m. Tính chiều cao mà thang có thể vươn tới.

Bài 5 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Bài 5 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Đặt các điểm A, B, C, H như hình vẽ trên.

Áp dụng định lí Pythagore cho tam giác ABC vuông tại C, ta có:

AB2 = AC2 + BC2.

Suy ra: AC2 = AB2 – BC2 = 132 – 52 = 169 – 25 = 144 = 122.

Do đó AC = 12 m và AH = 12 + 3 = 15 (m).

Vậy chiều cao mà thang có thể vươn tới là 15 m.

Bài 6 trang 62 Toán 8 Tập 1: Một con thuyền đang neo ở một điểm cách chân tháp hải đăng 180 m. Cho biết tháp hải đăng cao 25 m. Hãy tính khoảng cách từ thuyền đến ngọn hải đăng.

Bài 6 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Bài 6 trang 62 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Đặt các điểm A, B lần lượt là vị trí của đỉnh tháp hải đăng, chân tháp hải đăng và C là vị trí của con thuyền.

Áp dụng định lí Pythagore cho tam giác ABC vuông tại B, ta có:

AC2 = AB2 + BC2 = 252 + 1802 = 625 + 32 400 = 33 025.

Suy ra AC ≈ 181,73 (m).

Vậy khoảng cách từ thuyền đến ngọn hải đăng khoảng 181,73 m.

Đánh giá

0

0 đánh giá