Vận dụng trang 23 Toán 10 Tập 1 | Chân trời sáng tạo Giải Toán lớp 10

3.1 K

Với giải Vận dụng trang 23 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 3: Các phép toán trên tập hợp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 3: Các phép toán trên tập hợp

Vận dụng trang 23 Toán lớp 10: Tại vòng chung kết của một trò chơi trên truyền hình, có 100 khán giả tại trường quay có quyền bình chọn cho hai thí sinh A và B. Biết rằng có 85 khán giả bình chọn cho thí sinh A, 72 khán giả bình chọn cho thí sinh B và 60 khán giả bình chọn cho cả hai thí sinh. Có bao nhiêu khán giả đã tham gia bình chọn? Có bao nhiêu khán giả không tham gia bình chọn?

Phương pháp giải:

Kí hiệu A, B lần lượt là tập hợp các khán giả bình chọn cho thí sinh A và thí sinh B.

Sử dụng biểu đồ Ven, minh họa tập hợp các khán giả đã tham gia bình chọn (AB) và các khán giả không tham gia bình chọn.

Lời giải:

Gọi A, B lần lượt là tập hợp các khán giả bình chọn cho thí sinh A và thí sinh B.

Theo giả thiết, n(A)=85,n(B)=72,n(AB)=60

 

Nhận thấy rằng, nếu tính tổng n(A)+n(B) thì ta được số khán giả đã tham gia bình chọn, nhưng số khán giả bình chọn cho cả hai thí sinh được tính hai lần. Do đó, số khán giả đã tham gia bình chọn là:

n(AB)=n(A)+n(B)n(AB)=85+7260=97

Như vậy trong hội trường 100 khán giả, có 97 khán giải đã tham gia bình chọn, còn lại số khán giả không tham gia bình chọn là: 10097=3 (khán giả).

Lý thuyết Hợp và giao của các tập hợp

- Cho hai tập hợp A và B.

Tập hợp các phần tử thuộc A hoặc thuộc B gọi là hợp của hai tập hợp A và B, kí hiệu A  B.

 B = {x| x  A hoặc x  B}.

Tập hợp các phần tử thuộc cả hai tập hợp A và B gọi là giao của hai tập hợp A và B, kí hiệu A ∩ B.

A ∩ B = {x | x  A và x  B}.

Nhận xét:

+ Nếu A và B là hai tập hợp hữu hạn thì n(A  B) = n(A) + n(B) – n(A ∩ B).

+ Đặc biệt, nếu A và B không có phần tử chung, tức A ∩ B = , thì n(A  B) = n(A) + n(B).

Ví dụ 1.

Cho hai tập hợp S = {2; 3; 4; 5; 6; 7; 8; 9} và T = {4; 5; 6; 7}.

Giao của 2 tập hợp là tập hợp M = S ∩ T = {4; 5; 6; 7}.

+ Cho hai tập hợp S = {1; 2; 3; 4} và T = {5; 6; 7}.

Hợp của hai tập hợp S và T là tập hợp N = S  T = {1; 2; 3; 4; 5; 6; 7}.

Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

HĐ Khởi động trang 21 Toán lớp 10: Có 2 đường tròn chia một hình chữ nhật thành các miền như hình bên. Hãy đặt mỗi thẻ số sau đây vào miền thích hợp trên hình chữ nhật và giải thích cách làm...

HĐ Khám phá 1 trang 21 Toán lớp 10: Bảng sau đây cho biết kết quả vòng phỏng vấn tuyển dụng vào một công ty (dấu “+” là đạt, dấu “-” là không đạt):...

Thực hành 1 trang 23 Toán lớp 10: Xác định các tập hợp AB và AB, biết:...

Thực hành 2 trang 23 Toán lớp 10: Cho A={(x;y)|x,y, 3x-y=9}B={(x;y)|x,y,x-y=1}. Hãy xác định AB ...

HĐ Khám phá 2 trang 23 Toán lớp 10: Trở lại bảng thông tin về kết quả phỏng vấn tuyển dụng ở Hoạt động khám phá 1...

Thực hành 3 trang 24 Toán lớp 10: Cho tập hợp E={x|x<8}, A={0;1;2;3;4}, B={3;4;5}. Xác định các tập hợp sau đây:...

Thực hành 4 trang 25 Toán lớp 10: Xác định các tập hợp sau đây:...

Bài 1 trang 25 Toán lớp 10: Xác định các tập hợp AB và AB với...

Bài 2 trang 25 Toán lớp 10: Xác định các tập hợp AB trong mỗi trường hợp sau:...

Bài 3 trang 25 Toán lớp 10: Cho E={x|x<10}, A={xE|x là bi ca 3}, B={xE|x là ưc ca 6}. Xác định các tập hợp AB, BA,CEA,CEB,CE(AB),CE(AB)...

Bài 4 trang 25 Toán lớp 10: Cho A và B là hai tập hợp bất kì. Trong mỗi cặp tập hợp sau đây, tập hợp nào là tập con của tập hợp còn lại? Hãy giải thích bằng cách sử dụng biểu đồ Ven...

Bài 5 trang 25 Toán lớp 10: Trong số 35 học sinh của lớp 10H, có 20 học sinh thích môn Toán, 16 học sinh thích môn Tiếng Anh và 12 học sinh thích cả hai môn này. Hỏi lớp 10H:...

Bài 6 trang 25 Toán lớp 10: Xác định các tập hợp sau đây:...

Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Tập hợp

Bài 3: Các phép toán trên tập hợp

Bài tập cuối chương 1

Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

 

Đánh giá

0

0 đánh giá