HĐ3 trang 57 Toán lớp 10: Với và hai số thực k, t, những khẳng định nào sau đây là đúng?
a) Hai vecto và có cùng độ dài bằng
b) Nếu thì cả hai vecto , cùng hướng với
c) Nếu thì cả hai vecto , ngược hướng với
d) Hai vecto và bằng nhau.
Phương pháp giải:
Vecto (với ) cùng hướng với vecto và có độ đài bằng .
Vecto (với ) ngược hướng với vecto và có độ đài bằng .
Lời giải:
a) Hai vecto và có cùng độ dài bằng
Ta có:
Và
b) Nếu thì cả hai vecto , cùng hướng với
Ta xét 2 trường hợp:
Trường hợp 1:
Vecto cùng hướng với vecto (vì ), mà vecto cùng hướng với vecto (vì )
Do đó vecto cùng hướng với vecto .
Trường hợp 2:
Vecto ngược hướng với vecto (vì ), mà vecto ngược hướng với vecto (vì )
Do đó vecto cùng hướng với vecto .
Vậy vecto luôn cùng hướng với vecto nếu .
Lại có: nên cùng hướng với
Vậy thì cả hai vecto , cùng hướng với
c) Nếu thì cả hai vecto , ngược hướng với
Ta xét 2 trường hợp:
Trường hợp 1:
Vecto cùng hướng với vecto (vì ), mà vecto ngược hướng với vecto (vì )
Do đó vecto ngược hướng với vecto .
Trường hợp 2:
Vecto ngược hướng với vecto (vì ), mà vecto cùng hướng với vecto (vì )
Do đó vecto ngược hướng với vecto .
Vậy vecto luôn ngược hướng với vecto nếu .
Lại có: nên ngược hướng với
Vậy thì cả hai vecto , ngược hướng với
d)
Từ ý b) và c), ra suy ra hai vecto và luôn cùng hướng.
Theo câu a) ta có:
Hai vecto và bằng nhau
HĐ4 trang 57 Toán lớp 10: Hãy chỉ ra trên Hình 4.26 hai vecto và . Từ đó, nêu mối quan hệ giữa và
Lời giải:
Kí hiệu O, E, F là các điểm như trên hình vẽ.
Dễ thấy: tứ giác OEMF là hình bình hành nên hay
Và
Mặt khác:
Và hay
Luyện tập 2 trang 57 Toán lớp 10: Cho tam giác ABC có trọng tâm G. Chứng minh rằng với điểm O tùy ý, ta có
Phương pháp giải:
G là trọng tâm của tam giác ABC thì
Với 3 điểm A, B, C bất kì, ta luôn có
Lời giải:
Ta có: ; ;
Do G là trọng tâm của tam giác ABC nên
Luyện tập 3 trang 57 Toán lớp 10: Trong hình 4.27, hãy biểu thị mỗi vecto theo hai vecto , tức là tìm các số để
Phương pháp giải:
Phân tích vecto theo hai vecto cho trước.
Lời giải:
Bước 1: Dựng hình bình hành có cạnh song song với giá của vecto và đường chéo là vecto .
Ta dựng được hình hình hành ABCD và DEGH. Trong đó: DC và DE nằm trên giá của vecto , DA và DH nằm trên giá của vecto , còn vecto lần lượt là hai dường chéo.
Dễ thấy:
Mà
Xem thêm lời giải Toán 10 Kết nối tri thức hay, chi tiết khác: